## 32-bit Microcontrollers

## CMOS

## FR60 MB91490 Series

## MB91F492 / FV470

## ■ DESCRIPTION

The MB91490 series is Fujitsu's general-purpose 32-bit RISC microcontroller, which is designed for embedded control applications that require high-speed processing performance.
This series uses the FR60 CPU, which is compatible with the FR* family of CPUs.

* : FR, the abbreviation of FUJITSU RISC controller, is a line of products of Fujitsu Microelectronics Limited.


## - FEATURES

- FR60 CPU
- 32-bit RISC, load/store architecture, five-stage pipeline
- Operating frequency of 80 MHz (PLL clock multiplied)
- 16-bit fixed-length instructions (basic instructions)
- Instruction execution speed : one instruction per cycle
- Memory-to-memory transfer, bit processing, barrel shift instructions, etc. : instructions suitable for embedded applications
- Function entry and exit instructions, multi load/store instructions of register contents : instructions compatible with C language.
- Register interlock function to facilitate assembly-language coding
- Built-in multiplier/instruction-level support
- Signed 32-bit multiplication : 5 cycles
- Signed 16-bit multiplication : 3 cycles
- Interrupts (save PC and PS) : 6 cycles, 16 priority levels
- Harvard architecture allowing program access and data access to be executed simultaneously
- Instructions compatible with the FR family
(Continued)

For the information for microcontroller supports, see the following web site.
http://edevice.fujitsu.com/micom/en-support/

## MB91490 Series

## (Continued)

- Built-in Peripheral functions
- I/O ports
- NMI (Non Maskable Interrupt)
- External interrupts
- Bit search module (for REALOS)

Function to search for the position of the first bit that has changed from 1 to 0 in a word starting from the MSB

- 16-bit reload timers
- Timing generator
- 8/16-bit PPG timers
- Multi-function timer
- 16-bit free-run timer
- Input capture (Linked to free-run timer)
- Output compare (Linked to free-run timer)
- A/D start up compare (Linked to free-run timer)
- Wave form generator

Various wave forms are generated by using output compare output, 16-bit PPG timer and 16-bit dead timer.

- Base timer

Only one timer function can be selected from the 16-bit PWM timer, 16-bit PPG timer, 16/32-bit reload timer, and 16/32-bit PWC timer.

- 8/16-bit up/down counter
- Multi-function serial interface
- Full-duplex double buffer
- Asynchronous (start-stop synchronization) communication, clock synchronous communication, $\mathrm{I}^{2} \mathrm{C}$ standard mode (Max 100 kbps ), $\mathrm{I}^{2} \mathrm{C}$ high-speed mode (selectable various modes at maximum of 400 kbps )
- Selectable parity On/Off
- Each channel has built-in baud rate generator
- Error detection function for parity, frame and overrun errors
- External clock can be used as transfer clock
- With $\mathrm{I}^{2} \mathrm{C}$ function
- 8/10-bit A/D Converter (Successive comparison type)
- Resolution : 8-bit or 10-bit resolution selectable
- Conversion time : $1.2 \mu \mathrm{~s}$ (minimum conversion time for 33 MHz peripheral clock (CLKP))
$1.2 \mu \mathrm{~s}$ (minimum conversion time for 40 MHz peripheral clock (CLKP))
- DMAC (DMA Controller)
- Transfers can be started by software or by interrupts from the built-in peripherals
- Wild register
- Instructions or data located at a target address can be replaced (in the built-in Flash area only)
- Low voltage detection interrupt / reset
- Detects low voltage ( $3.7 \mathrm{~V} \pm 0.3 \mathrm{~V}$ ) and generate external interrupt
- Detects low voltage ( $3.0 \mathrm{~V} \pm 0.24 \mathrm{~V}$ ) and generate system initialization reset
- Flash memory security function
- Protects the content of Flash memory
- Other Features
- Watchdog timer
- Low-power consumption modes
- Sleep/stop function
- CMOS technologies : $0.18 \mu \mathrm{~m}$
- Power supply : Single power supply ( $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to 5.5 V )


## MB91490 Series

PRODUCT LINEUP

| Characteristics | Common EVA of the series | MB91490 series |
| :---: | :---: | :---: |
|  | MB91FV470 | MB91F492 |
| Built-in Flash capacity | 512 Kbytes (Flash) | 256 Kbytes (Flash) |
| Flash security | - | $\bigcirc$ |
| Built-in RAM capacity | 40 Kbytes | 12 Kbytes |
| I/O ports | 160 | 49 |
| External interrupts | NMI 16 channels | NMI 7 channels |
| Reload timer | 2 channels | 2 channels |
| Timing generator | 2 units | 1 unit |
| PPG | 8 -bit $\times 16$ channels 16 -bit $\times 8$ channels | 8-bit $\times 8$ channels 16 -bit $\times 4$ channels (PPG output: 3 channels) |
| Multi-function timer | 2 units | 1 unit |
| Free-run timer | 6 channels | 3 channels |
| OCU | 12 channels | 6 channels |
| ICU | 8 channels | 4 channels |
| A/D activating compare | 6 channels | 2 channels |
| Wave form generator | 12 channels | 6 channels |
| Base timer | 6 channels | 2 channels |
| Up/down counter | 2 channels | 1 channel |
| Multi-function serial interface | 6 units (w FIFO) | 3 units (w/o FIFO) |
| 8/10-bit <br> A/D converter | 4 channels $\times 2$ units 16 channels $\times 1$ unit | 4 channels $\times 1$ unit <br> 8 channels $\times 1$ unit |
| Low voltage detection interrupt | - | 1 channel |
| Low voltage detection reset | - | 1 channel |
| DMAC | 5 channels | 5 channels |
| Wild register | 16 channels | 16 channels |
| Debug function | DSU4 | - |

$\bigcirc$ : Supported

## MB91490 Series

■ PACKAGE AND CORRESPONDING PRODUCTS

| Package | MB91F492 |
| :---: | :---: |
| FPT-64P-M23 <br> $($ LQFP-0.65 mm$)$ | 0 |
| FPT-64P-M24 <br> $($ LQFP-0.50 mm$)$ | $\bigcirc$ |

O : Supported
Note : For details of each package, refer to "■ PACKAGE DIMENSIONS".

## MB91490 Series

## - PIN ASSIGNMENT



## MB91490 Series

PIN DESCRIPTION

| Pin no. | Pin name | I/O circuit type* | Function |
| :---: | :---: | :---: | :---: |
| 54 | MD2 | K | Mode pin 2 <br> This pin sets the basic operating mode. <br> During normal communication, input must be at the "L" level. <br> During serial programming to flash memory, input must be at the " H " level. |
| 53 | MD1 | K | Mode pin 1 <br> This pin sets the basic operating mode. Input must always be at the "L" level. |
| 52 | MDO | K | Mode pin 0 <br> This pin sets the basic operating mode. Input must always be at the "L" level. |
| 51 | X0 | A | Clock (oscillation) input |
| 50 | X1 | A | Clock (oscillation) output |
| 32 | INITX | 1 | External reset input |
| 64 | NMIX | H | NMI (Non Maskable Interrupt) input |
| 57 | INTO | D | External interrupt 0 input |
|  | P80 |  | General-purpose I/O port |
| 58 | INT1 | D | External interrupt 1 input |
|  | P81 |  | General-purpose I/O port |
| 59 | INT2 | D | External interrupt 2 input |
|  | P82 |  | General-purpose I/O port |
| 60 | INT3 | D | External interrupt 3 input |
|  | P83 |  | General-purpose I/O port |
| 61 | INT4 | D | External interrupt 4 input |
|  | PPG4 |  | Output of PPG timer 4 |
|  | P84 |  | General-purpose I/O port |
| 62 | INT5 | D | External interrupt 5 input |
|  | PPG5 |  | Output of PPG timer 5 |
|  | P85 |  | General-purpose I/O port |
| 63 | INT6 | D | External interrupt 6 input |
|  | PPG6 |  | Output of PPG timer 6 |
|  | P86 |  | General-purpose I/O port |
| 55 | ADTG1 | D | External trigger input of 8/10-bit A/D converter 1 |
|  | PA1 |  | General-purpose I/O port |
| 56 | ADTG2 | D | External trigger input of 8/10-bit A/D converter 2 |
|  | PA2 |  | General-purpose I/O port |

(Continued)

| Pin no. | Pin name | I/O circuit type* | Function |
| :---: | :---: | :---: | :---: |
| 33 | AN1-0 | G | Analog 0 input of 8/10-bit A/D converter 1 |
|  | PB4 |  | General-purpose I/O port |
| 34 | AN1-1 | G | Analog 1 input of 8/10-bit A/D converter 1 |
|  | PB5 |  | General-purpose I/O port |
| 35 | AN1-2 | G | Analog 2 input of 8/10-bit A/D converter 1 |
|  | PB6 |  | General-purpose I/O port |
| 36 | AN1-3 | G | Analog 3 input of 8/10-bit A/D converter 1 |
|  | PB7 |  | General-purpose I/O port |
| 40 | AN2-0 | G | Analog 0 input of 8/10-bit A/D converter 2 |
|  | PC0 |  | General-purpose I/O port |
| 41 | AN2-1 | G | Analog 1 input of 8/10-bit A/D converter 2 |
|  | PC1 |  | General-purpose I/O port |
| 42 | AN2-2 | G | Analog 2 input of 8/10-bit A/D converter 2 |
|  | PC2 |  | General-purpose I/O port |
| 43 | AN2-3 | G | Analog 3 input of 8/10-bit A/D converter 2 |
|  | PC3 |  | General-purpose I/O port |
| 44 | AN2-4 | G | Analog 4 input of 8/10-bit A/D converter 2 |
|  | PC4 |  | General-purpose I/O port |
| 45 | AN2-5 | G | Analog 5 input of 8/10-bit A/D converter 2 |
|  | PC5 |  | General-purpose I/O port |
| 46 | AN2-6 | G | Analog 6 input of 8/10-bit A/D converter 2 |
|  | PC6 |  | General-purpose I/O port |
| 47 | AN2-7 | G | Analog 7 input of 8/10-bit A/D converter 2 |
|  | PC7 |  | General-purpose I/O port |
| 1 | $\begin{aligned} & \text { SCKO } \\ & \text { (SCLO) } \end{aligned}$ | D | Clock I/O of multi-function serial interface 0 (used in $\mathrm{I}^{2} \mathrm{C}$ mode, SCLO) |
|  | PG0 |  | General-purpose I/O port |
| 2 | SIN0 | D | Data input of multi-function serial interface 0 (not used in ${ }^{2} \mathrm{C}$ C mode) |
|  | PG1 |  | General-purpose I/O port |
| 3 | $\begin{gathered} \hline \text { SOTO } \\ \text { (SDAO) } \end{gathered}$ | D | Data output of multi-function serial interface 0 (used in $I^{2} \mathrm{C}$ mode, SDAO) |
|  | PG2 |  | General-purpose I/O port |

(Continued)

| Pin no. | Pin name | I/O circuit type* | Function |
| :---: | :---: | :---: | :---: |
| 4 | $\begin{gathered} \hline \text { SCK1 } \\ \text { (SCL1) } \end{gathered}$ | D | Clock I/O of multi-function serial interface 1 (used in ${ }^{2} \mathrm{C}$ mode, SCL1) |
|  | PG3 |  | General-purpose I/O port |
| 5 | SIN1 | D | Data input of multi-function serial interface 1 (not used in $\mathrm{I}^{2} \mathrm{C}$ mode) |
|  | PG4 |  | General-purpose I/O port |
| 6 | $\begin{gathered} \hline \text { SOT1 } \\ \text { (SDA1) } \end{gathered}$ | D | Data output of multi-function serial interface 1 (used in ${ }^{2} \mathrm{C}$ mode, SDA1) |
|  | PG5 |  | General-purpose I/O port |
| 7 | $\begin{gathered} \text { SCK2 } \\ \text { (SCL2) } \end{gathered}$ | D | Clock I/O of multi-function serial interface 2 (used in ${ }^{2} \mathrm{C}$ mode, SCL2) |
|  | PH0 |  | General-purpose I/O port |
| 8 | SIN2 | D | Data input of multi-function serial interface 2 (not used in $\mathrm{I}^{2} \mathrm{C}$ mode) |
|  | PH1 |  | General-purpose I/O port |
| 9 | $\begin{gathered} \hline \text { SOT2 } \\ \text { (SDA2) } \end{gathered}$ | D | Data output of multi-function serial interface 2 (used in ${ }^{2} \mathrm{C}$ mode, SDA2) |
|  | PH2 |  | General-purpose I/O port |
| 28 | TIN0 | D | Base timer 0 input |
|  | PJo |  | General-purpose I/O port |
| 29 | TOUT0 | D | Base timer 0 output |
|  | PJ1 |  | General-purpose I/O port |
| 30 | TIN1 | D | Base timer 1 input |
|  | PJ2 |  | General-purpose I/O port |
| 31 | TOUT1 | D | Base timer 1 output |
|  | PJ3 |  | General-purpose I/O port |
| 25 | AIN0 | D | 8/16-bit up count input pin for up/down counter 0 |
|  | PLO |  | General-purpose I/O port |
| 26 | BIN0 | D | 8/16-bit down count input pin for up/down counter 0 |
|  | PL1 |  | General-purpose I/O port |
| 27 | ZIN0 | D | 8/16-bit reset input pin for up/down counter 0 |
|  | PL2 |  | General-purpose I/O port |
| 19 | IC0 | D | Trigger input of input capture 0 |
|  | PP0 |  | General-purpose I/O port |
| 20 | IC1 | D | Trigger input of input capture 1 |
|  | PP1 |  | General-purpose I/O port |

(Continued)
(Continued)

| Pin no. | Pin name | I/O circuit type* | Function |
| :---: | :---: | :---: | :---: |
| 21 | IC2 | D | Trigger input of input capture 2 |
|  | PP2 |  | General-purpose I/O port |
| 22 | IC3 | D | Trigger input of input capture 3 |
|  | PP3 |  | General-purpose I/O port |
| 23 | CKIO | D | External clock input pin of free-run timer ch. 0 to ch. 2 |
|  | PP4 |  | General-purpose I/O port |
| 24 | DTTIO | D | Input signal controlling wave form generator outputs RTO0 to RTO5 of multi-function timer 0 |
|  | PP5 |  | General-purpose I/O port |
| 10 | RTO0 | J | Wave form generator output of multi-function timer 0 |
|  | PQ0 |  | General-purpose I/O port |
| 11 | RTO1 | J | Wave form generator output of multi-function timer 0 |
|  | PQ1 |  | General-purpose I/O port |
| 12 | RTO2 | J | Wave form generator output of multi-function timer 0 |
|  | PQ2 |  | General-purpose I/O port |
| 13 | RTO3 | J | Wave form generator output of multi-function timer 0 |
|  | PQ3 |  | General-purpose I/O port |
| 14 | RTO4 | J | Wave form generator output of multi-function timer 0 |
|  | PQ4 |  | General-purpose I/O port |
| 15 | RTO5 | J | Wave form generator output of multi-function timer 0 |
|  | PQ5 |  | General-purpose I/O port |

* : Refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.


## MB91490 Series

Power supply pins and GND pins

| Pin no. | Pin <br> name | Function |
| :---: | :---: | :--- |
| 16 | VCC | Power supply pins <br> Connect all pins to the same potential. <br> 48 |
| 17 | VSS | GND pins <br> Connect all pins to the same potential. |
| 49 | C | Capacitor coupling pin for internal regulator |
| 38 | AVCC10 | Analog power supply pin for 8/10-bit A/D converter 1/2 |
| 39 | AVSS10 | Analog GND pin for 8/10-bit A/D converter 1/2 |
| 38 | AVRH2 | Analog reference power supply pin for 8/10-bit A/D converter 1/2 |

## MB91490 Series

## I/O CIRCUIT TYPE

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| A |  | Oscillation feedback resistance for high speed (main clock oscillation) approx. $1 \mathrm{M} \Omega$ |
| D |  | - CMOS level output <br> - CMOS level hysteresis input <br> - With standby control <br> - With pull-up control |
| G |  | - Analog/CMOS level hysteresis I/O pin <br> - CMOS level output <br> - CMOS level hysteresis input (with standby control) <br> - Analog input (Operates as an analog input when the corresponding AICR register bit is " 1 ".) <br> - With pull-up control |

(Continued)

## MB91490 Series

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| H |  | - CMOS level hysteresis input <br> - Without standby control |
| 1 |  | - CMOS level hysteresis input <br> - Without standby control <br> - With pull-up resistance |
| J |  | - CMOS level output <br> - CMOS level hysteresis input <br> - With standby control <br> - With pull-up control |

(Continued)

## MB91490 Series

(Continued)

| Type | Circuit | Remarks |
| :---: | :---: | :---: |
| K |  | CMOS level input |

## MB91490 Series

## - HANDLING DEVICES

- Preventing latch-up

Latch-up phenomenon may occur with CMOS IC, when a voltage higher than Vcc or lower than Vss is applied to either the input or output terminals, or when a voltage is applied between VCC pin and VSS pin that exceeds the rated voltage. When latch-up occurs, a significant power-supply current surge results, which may damage some elements due to the excess heat, so great care must be taken to ensure that the maximum rating is never exceeded during use.

- Treatment of unused input pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example, using a pull-up or pull-down resistor.

- Power pins

In products with multiple VCC and VSS pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to the same potential power supply and a ground line externally to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with the VCC and VSS pins of this device at the low impedance. It is also advisable to connect a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$ as a bypass capacitor between VCC and VSS pins near this device.

- Crystal oscillator circuit

Noise near the X 0 and X 1 pins may cause the device to malfunction. Design the printed circuit board so that X 0 , X1, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended to design the PC board artwork with the X 0 and X 1 pins surrounded by ground plane because stable operation can be expected with such a layout. Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

- About mode pins (MD0 to MD2)

These pins should be connected directly to Vcc pin or Vss pin.
Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and power supply or GND pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

- Operation at start-up

Be sure to execute setting initialized reset (INIT) with INITX pin immediately after start-up.
Immediately after that, also, hold the "L"-level input to the INITX pin for the stabilization wait time required for the oscillator circuit to take the oscillation stabilization wait time for the oscillator circuit and the stabilization wait time for the regulator (For INIT via the INITX pin, the oscillation stabilization wait time setting is initialized to the minimum value).

## MB91490 Series

- Notes upon power-on sequence

It requires more than $600 \mu \mathrm{~s}$ (between 0.0 V to 5.0 V ) to rise voltage upon power on in order to prevent the device malfunction caused by the overshooting in the built-in voltage step-down circuit.
After the supply voltage is stable (voltage is risen) , it takes $600 \mu$ s until internal supply is stable. Hold the input to the INITX pin during that period.
If it takes less than $600 \mu \mathrm{~s}$ (between 0.0 V to 5.0 V ) for power up, it requires $2 \mathrm{~ms}^{*}$ until internal supply is stable after voltage supply is stable (voltage is risen). Hold the input to the INITX pin during that period.

CASE : voltage rising time is more than $600 \mu \mathrm{~s}(0.0 \mathrm{~V}$ to 5.0 V$)$


CASE : voltage rising time is less than $600 \mu \mathrm{~s}(0.0 \mathrm{~V}$ to 5.0 V )

*: In case of which it takes less than $600 \mu \mathrm{~s}$ (between 0.0 V to 5.0 V ) to rise voltage, the time to make internal power supply stable is proportional to the capacitance value of the bypass capacitor for the pin C . It takes 2 ms if the pin $\mathrm{C}=4.7 \mu \mathrm{~F} ; 4 \mathrm{~ms}$ if the pin $\mathrm{C}=9.4 \mu \mathrm{~F}$.

## MB91490 Series

- Order of power turning ON/OFF

Use the following procedure for turning the power on or off. If not using the $A / D$ converter, connect $A V c c=V_{c c}$ and $A V s s=V s s$. Turn on the power supply in the sequence $\mathrm{Vcc} \rightarrow \mathrm{AVcc} \rightarrow \mathrm{AVRH} 2$, and turn off the power in the reverse sequence.

- Source oscillation input when turning on the power

When turning the power on, maintain the clock input until the device is released from the oscillation stabilization wait state.

- Cautions for operation during PLL clock mode

Even if the oscillator comes off or the clock input stops with the PLL clock selected for MB91490 series, MB91490 series may continue to operate at the free-run frequency of the PLL's internal self-oscillating oscillator circuit.
Performance of this operation, however, cannot be guaranteed.

- Using an external clock

When using an external clock, you must always input clock signals with opposite phase from X0 pin to X1 pin simultaneously. However, as the X 1 pin halts with an output at the " H " level during stop mode, insert a resistor of approximately $1 \mathrm{k} \Omega$ externally to prevent a conflict between the two outputs if using stop mode (oscillation stop mode).

The figure below shows an example of how to use an external clock.

- Example of Using an External Clock

- C pin

As MB91490 series includes an internal regulator, always connect a bypass capacitor of approximately $4.7 \mu \mathrm{~F}$ to the C pin for use by the regulator.


- Software reset on the synchronous mode

Be sure to meet the following two conditions before setting 0 to the SRST bit of STCR (standby control register) when the software reset is used on the synchronous mode.

- Set the interrupt enable flag (I-Flag) to interrupts disabled (I-Flag=0).
- Not used NMI


## MB91490 Series

## BLOCK DIAGRAM



## MB91490 Series

## MEMORY SPACE

## 1. Memory Space

The FR family has 4 Gbytes of logical address space ( $2^{32}$ addresses) available to the CPU by linear access.

- Direct Addressing Areas

The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly by the instruction. The size of directly addressable areas depends on the length of the data being accessed as shown below.
$\rightarrow$ byte data access : 000н to 0FFн
$\rightarrow$ half word data access : 000 H to 1FFн
$\rightarrow$ word data access : 000н to 3FFн
2. Memory Map


## MB91490 Series

## I/O MAP

[How to read the table]


Note: Initial values of register bits are represented as follows :
" 1 " : Initial Value" 1 "
" 0 " : Initial Value" 0 "
" X " : Initial Value " undefined "
" - " : No physical register at this location
Access to addresses where the data access properties have not been documented is prohibited.

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 000000н | - |  |  |  | (Reserved) |
| 000004н |  |  | $\begin{gathered} \text { PDR8 [R/W] } \\ \mathrm{B} \\ -\mathrm{XXXXXX} \end{gathered}$ | - | Port data register |
| 000008н | $\begin{gathered} \text { PDRA [R/W] } \\ \text { B, H } \\ ----X X- \end{gathered}$ | $\begin{gathered} \text { PDRB [R/W] } \\ \text { B, H } \\ \text { XXXX---- } \end{gathered}$ | $\begin{gathered} \text { PDRC [R/W] } \\ \mathrm{B} \\ \mathrm{XXXXXXXX} \end{gathered}$ | - |  |
| $00000 \mathrm{CH}_{\text {н }}$ | - |  | $\begin{gathered} \text { PDRG [R/W] } \\ \text { B, H } \\ --X X X X X X \end{gathered}$ | $\begin{gathered} \hline \text { PDRH [R/W] } \\ \text { B, H } \\ -----X X X \end{gathered}$ |  |
| 000010н | $\begin{gathered} \hline \text { PDRJ }[R / W] \\ B \\ ----X X X X \end{gathered}$ | - | $\begin{gathered} \hline \text { PDRL }[\mathrm{R} / \mathrm{W}] \\ \mathrm{B} \\ ----\mathrm{XXX} \end{gathered}$ | - |  |
| 000014H | $\begin{gathered} \text { PDRP [R/W] } \\ \text { B, H } \\ \text {--xXXXXX } \end{gathered}$ | $\begin{gathered} \text { PDRQ [R/W] } \\ \text { B, H } \\ --X X X X X X \end{gathered}$ | - |  |  |
| $\begin{gathered} 000018 \mathrm{H} \\ \text { to } \\ 00003 \mathrm{C}_{\mathrm{H}} \end{gathered}$ | - |  |  |  | (Reserved) |
| 000040н | $\begin{gathered} \text { EIRRO [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { ENIRO [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | ELVRO [R/W] B, H, W 0000000000000000 |  | External interrupt (INTO to INT6, Low voltage detection interrupt) |
| 000044н | $\underset{-----0}{\text { DICR }[R / W] ~ B, ~ H}$ | $\begin{gathered} \mathrm{HRCL}[\mathrm{R} / \mathrm{W}, \mathrm{R}] \\ \mathrm{B}, \mathrm{H} \\ 0--11111 \end{gathered}$ | - |  | Delay interrupt/ hold request |
| 000048н | TMRLRO [W] H, W XXXXXXXX XXXXXXXX |  | TMRO [R] H, W XXXXXXXX XXXXXXXX |  | Reload timer 0 |
| 00004CH | - |  | $\begin{gathered} \hline \text { TMCSRO [R/W, R] B, H } \\ ----00---00000 \end{gathered}$ |  |  |
| 000050н | TMRLR1 [W] H, W XXXXXXXX XXXXXXXX |  | TMR1 [R] H, W XXXXXXXX XXXXXXXX |  | Reload |
| 000054н | - |  | $\begin{gathered} \hline \text { TMCSR1 [R/W, R] B, H } \\ \text {------00---00000 } \end{gathered}$ |  | timer 1 |
| 000058н, <br> $00005 \mathrm{C}_{\mathrm{H}}$ | - |  |  |  | (Reserved) |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 000060н | $\begin{gathered} \text { SSR0 [R/W, R] } \\ \text { B, H, W } \\ 00000011 \end{gathered}$ | $\begin{gathered} \hline \text { ESCRO }[R / W] / \\ \text { IBSRO }[R / W, R] \\ \text { B, H,W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \hline \text { SCRO }[\mathrm{R} / \mathrm{W}] / \\ \text { IBCRO }[\mathrm{R} / \mathrm{W}, \mathrm{R}] \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { SMRO [R/W] } \\ \text { B, H, W } \\ 000-0000 \end{gathered}$ | Multifunction serial interface 0 |
| 000064H | $\begin{gathered} \hline \text { BGR01[R/W] } \\ \text { B, H,W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \hline \text { BGR00 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | RDRO [R]/ TDRO [W] H, W -------0 00000000 |  |  |
| 000068н | - |  | $\begin{gathered} \hline \text { ISMKO [R/W] } \\ \text { B, H } \\ 01111111 \end{gathered}$ | $\begin{gathered} \hline \text { ISBAO [R/W] } \\ \text { B, H } \\ 00000000 \end{gathered}$ |  |
| 00006CH | - |  |  |  | (Reserved) |
| 000070н | $\begin{gathered} \text { SSR1 [R/W, R] } \\ \text { B, H, W } \\ 00000011 \end{gathered}$ | $\begin{gathered} \hline \text { ESCR1 [R/W]/ } \\ \text { IBSR1 [R/W, R] } \\ \text { B, H,W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \hline \text { SCR1 [R/W]/ } \\ \text { IBCR1 [R/W, R] } \\ \text { B, H,W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { SMR1 [R/W] } \\ \text { B, H, W } \\ 000-0000 \end{gathered}$ | Multifunction serial interface 1 |
| 000074 | $\begin{gathered} \text { BGR11 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \hline \text { BGR10 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | RDR1 [R]/TDR1 [W] H, W------00000000 |  |  |
| 000078н | - |  | $\begin{gathered} \hline \text { ISMK1 [R/W] } \\ \text { B, H } \\ 01111111 \end{gathered}$ | $\begin{gathered} \hline \text { ISBA1 [R/W] } \\ \text { B, H } \\ 00000000 \end{gathered}$ |  |
| $00007 \mathrm{CH}_{\mathrm{H}}$ | - |  |  |  | (Reserved) |
| 000080н | $\begin{gathered} \text { SSR2 [R/W, R] } \\ \text { B, H, W } \\ 00000011 \end{gathered}$ | $\begin{gathered} \text { ESCR2 }[R / W] / \\ \text { IBSR2 }[R / W, R] \\ B, H, W \\ 00000000 \end{gathered}$ | SCR2 [R/W]/ IBCR2 [R/W, R] B, H, W 00000000 | $\begin{gathered} \text { SMR2 [R/W] } \\ \text { B, H, W } \\ 000-0000 \end{gathered}$ | Multifunction serial interface 2 |
| 000084н | $\begin{gathered} \text { BGR21 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { BGR20 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | RDR2 [R]/ TDR2 [W] H, W -------0 00000000 |  |  |
| 000088н | - |  | $\begin{gathered} \text { ISMK2 [R/W] } \\ \text { B, H } \\ 01111111 \end{gathered}$ | $\begin{gathered} \text { ISBA2 [R/W] } \\ \text { B, H } \\ 00000000 \end{gathered}$ |  |
| 00008CH | - |  |  |  | (Reserved) |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| $\begin{aligned} & 00009 \mathrm{O}_{\mathrm{H}} \\ & \text { to } \\ & 00009 \mathrm{C}_{\mathrm{H}} \end{aligned}$ | - |  |  |  | (Reserved) |
| 0000А号 | $\begin{gathered} \hline \text { OCCPBHO, OCCPBLO [W]/ } \\ \text { OCCPHO, OCCPLO [R] } \\ \text { H, W } \\ 0000000000000000 \end{gathered}$ |  | ```OCCPBH1, OCCPBL1 [W]/ OCCPH1, OCCPL1 [R] H, W 0000000000000000``` |  |  |
| 0000A4н | $\begin{gathered} \hline \text { OCCPBH2, OCCPBL2 [W]/ } \\ \text { OCCPH2, OCCPL2 [R] } \\ \text { H, W } \\ 0000000000000000 \end{gathered}$ |  | $\begin{gathered} \hline \text { OCCPBH3, OCCPBL3 [W]/ } \\ \text { OCCPH3, OCCPL3 [R] } \\ \text { H, W } \\ 0000000000000000 \end{gathered}$ |  |  |
| 0000А8н | $\begin{gathered} \hline \text { OCCPBH4, OCCPBL4 [W]/ } \\ \text { OCCPH4, OCCPL4 [R] } \\ \text { H, W } \\ 0000000000000000 \end{gathered}$ |  | $\begin{gathered} \hline \text { OCCPBH5, OCCPBL5 [W]/ } \\ \text { OCCPH5, OCCPL5 [R] } \\ \text { H, W } \\ 0000000000000000 \end{gathered}$ |  | OCU0 |
| 0000AСн | OCSH1 [R/W] B, H, W -110--00 | OCSLO [R/W] B, H, W 00001100 | OCSH3 [R/W] B, H, W -110--00 | $\begin{gathered} \hline \text { OCSL2 [R/W] } \\ \text { B, H, W } \\ 00001100 \end{gathered}$ |  |
| 0000В0н | OCSH5 [R/W] <br> B, H <br> -110--00 | OCSL4 [R/W] <br> B, H <br> 00001100 | OCMODO [R/W] B --000000 | - |  |
| 0000B4н | CPCLRBHO, CPCLRBLO [W]/ CPCLRHO, CPCLRLO [R] H, W 1111111111111111 |  | TCDTH0, TCDTLO [R/W] H, W0000000000000000 |  | Free-run |
| 0000В8н | TCCSH0 [R/W] <br> B, H, W <br> 00000000 | TCCSL0 [R/W] <br> B, H, W <br> 01000000 | TCCSM0 [R/W] <br> B, H, W <br> ----0000 | $\begin{gathered} \hline \text { ADTRGCO [R/W] } \\ \text { B, H, W } \\ -0-0-0-0 \end{gathered}$ | timer 0 |
| 0000ВСн | CPCLRBH1, CPCLRBL1 [W]/ CPCLRH1, CPCLRL1 [R] H, W 1111111111111111 |  | TCDTH1, TCDTL1 [R/W] H, W 0000000000000000 |  | Free-run |
| 0000С0н | $\begin{gathered} \text { TCCSH1 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | TCCSL1 [R/W] B, H, W 01000000 | TCCSM1 [R/W] <br> B, H, W <br> ----0000 | $\begin{gathered} \text { ADTRGC1 [R/W] } \\ \text { B, H, W } \\ -0-0-0-0 \end{gathered}$ | timer 1 |
| 0000C4н | CPCLRBH2, CPCLRBL2 [W]/ CPCLRH2, CPCLRL2 [R] H, W 1111111111111111 |  | TCDTH2, TCDTL2 [R/W] H, W 0000000000000000 |  | Free-run timer 2 |
| 0000С8н | TCCSH2 [R/W] B, H, W 00000000 | TCCSL2 [R/W] B, H, W 01000000 | TCCSM2 [R/W] <br> B, H, W <br> ----0000 | $\begin{gathered} \text { ADTRGC2 [R/W] } \\ \text { B, H, W } \\ -0-0-0-0 \end{gathered}$ |  |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 0000СС ${ }^{\text {¢ }}$ | - | $\begin{gathered} \hline \text { FRS2 }[R / W] \text { B } \\ --00--00 \end{gathered}$ | $\begin{gathered} \hline \text { FRS1 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ --00--00 \end{gathered}$ | $\begin{gathered} \hline \text { FRSO [R/W] B, H } \\ --00--00 \end{gathered}$ | Free-run timer selector 0 |
| 0000D0н | - |  | $\begin{gathered} \hline \text { FRS4 [R/W] B, H } \\ --00--00 \end{gathered}$ | $\begin{gathered} \text { FRS3 [R/W] B, H } \\ --00--00 \end{gathered}$ |  |
| 0000D4н | IPCPH0, IPCPLO [R] H, W XXXXXXXX XXXXXXXX |  | IPCPH1, IPCPL1 [R] H, W XXXXXXXX XXXXXXXX |  | ICUO |
| 0000D8н | IPCPH2, IPCPL2 [R] H, W XXXXXXXX XXXXXXXX |  | IPCPH3, IPCPL3 [R] H, W XXXXXXXX XXXXXXXX |  |  |
| 0000DCH | $\begin{gathered} \hline \text { PICSH01 [W, R] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \hline \text { PICSL01 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\underset{-----00}{ } \underset{\text { ICSH2 }}{ }$ | $\begin{gathered} \text { ICSL23[R/W] } \\ B, H, W \\ 00000000 \end{gathered}$ |  |
| 0000EOн | TMRRH0, TMRRLO [R/W] H, W XXXXXXXX XXXXXXXX |  | TMRRH1, TMRRL1 [R/W] H, W XXXXXXXX XXXXXXXX |  | Wave form generator 0 |
| 0000E4н | TMRRH2, TMRRL2 [R/W] H XXXXXXXX XXXXXXXX |  | - |  |  |
| 0000Е8н | $\begin{gathered} \text { DTCR0 [R/W] } \\ \text { B, H } \\ 00000000 \end{gathered}$ | $\begin{gathered} \hline \text { DTCR1 [R/W] } \\ \text { B, H } \\ 00000000 \end{gathered}$ | $\begin{gathered} \hline \text { DTCR2 [R/W] } \\ \text { B } \\ 00000000 \end{gathered}$ | - |  |
| 0000ECH | - | $\begin{gathered} \text { SIGCR10 [R/W] } \\ \text { B } \\ 00000000 \end{gathered}$ | - | $\begin{gathered} \text { SIGCR2O [R/W] } \\ \text { B } \\ 000000-1 \end{gathered}$ |  |
| 0000FOH | ADCOMPO [W]/ ADCOMPBO [R] H, W 0000000000000000 |  | ADCOMPDO [W]/ ADCOMPDBO [R] H, W 0000000000000000 |  | A/D activating compare 0 |
| 0000F4 ${ }^{\text {H }}$ | - |  |  |  |  |
| 0000F8н | ADCOMP2 [W]/ ADCOMPB2 [R] H, W 0000000000000000 |  | ADCOMPD2 [W]/ ADCOMPDB2 [R] H, W 0000000000000000 |  |  |
| 0000FCH | - | $\begin{aligned} & \text { ADTGBUFO } \\ & \text { [R/W] B } \\ & -0-0-1-1 \end{aligned}$ | ADTGSELO <br> [R/W] B, H --00--00 | ADTGCEO [R/W] B, H --00--00 |  |
| 000100н | PRLH0 [R/W] <br> B, H, W <br> XXXXXXXX | $\begin{gathered} \hline \text { PRLLO }[R / W] \\ B, H, W \\ X X X X X X X \end{gathered}$ | PRLH1 [R/W] <br> B, H, W <br> XXXXXXXX | $\begin{gathered} \hline \text { PRLL1 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$ | PPG |
| 000104н | $\begin{gathered} \text { PRLH2 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | $\begin{gathered} \text { PRLL2 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXX } \end{gathered}$ | $\begin{gathered} \text { PRLH3 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | $\begin{gathered} \text { PRLL3 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXX } \end{gathered}$ |  |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 000108н | $\begin{gathered} \text { PPGCO [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | PPGC1 [R/W] B, H, W 00000000 | $\begin{gathered} \text { PPGC2 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { PPGC3 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | PPG |
| 00010Сн | $\begin{gathered} \text { PRLH4 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | $\begin{gathered} \hline \text { PRLL4 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | $\begin{gathered} \text { PRLH5 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | $\begin{gathered} \text { PRLL5 [R/W] } \\ \text { B, H,W } \\ \text { XXXXXXXX } \end{gathered}$ |  |
| 000110н | $\begin{gathered} \text { PRLH6 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | $\begin{gathered} \text { PRLL6 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | PRLH7 [R/W] <br> B, H, W <br> XXXXXXXX | $\begin{gathered} \text { PRLL7 [R/W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ |  |
| 000114н | $\begin{gathered} \text { PPGC4 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { PPGC5 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { PPGC6 [R/W] } \\ \text { B, H, W } \\ 00000000 \end{gathered}$ | $\begin{gathered} \text { PPGC7 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$ |  |
| $\begin{aligned} & 000118 \mathrm{H} \\ & \text { to } \\ & 00012 \mathrm{C}_{\mathrm{H}} \end{aligned}$ | - |  |  |  | (Reserved) |
| 000130н | - | $\begin{gathered} \hline \text { TRG [R/W] B } \\ 00000000 \end{gathered}$ | - | $\begin{gathered} \text { GATECO }[\mathrm{R} / \mathrm{W}] \mathrm{B} \\ --00--00 \end{gathered}$ | PPG |
| 000134н | - | $\begin{gathered} \text { REVC [R/W] B } \\ 00000000 \end{gathered}$ | - | $\begin{gathered} \text { GATEC4 [R/W] B } \\ -----00 \end{gathered}$ |  |
| $\begin{aligned} & 000138 \mathrm{H} \\ & \text { to } \\ & 000140 \mathrm{H} \end{aligned}$ | - |  |  |  | (Reserved) |
| 000144н | $\begin{gathered} \hline \text { TTCRO [R/W, W, R] } \\ \text { B } \\ 11110000 \end{gathered}$ | - |  |  | Timing generator 0 |
| 000148н | COMPO [R/W] B, H, W 00000000 | COMP2 [R/W] B, H, W 00000000 | COMP4 [R/W] B, H, W 00000000 | COMP6 [R/W] B, H, W 00000000 |  |
| $\begin{aligned} & \hline 00014 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 00015 \mathrm{C}_{\mathrm{H}} \end{aligned}$ | - |  |  |  | (Reserved) |
| 000160н | BTOTMR [R] B, H, W 0000000000000000 |  | $\begin{aligned} & \text { BTOTMCR [R/W] B, H, W } \\ & -000000000000000 \end{aligned}$ |  | Base timer$0$ |
| 000164н | - | $\begin{gathered} \hline \text { BTOSTC [R/W] B } \\ 00000000 \end{gathered}$ |  |  |  |
| 000168н | $\begin{gathered} \text { BTOPCSR/BTOPRLL [R/W] } \\ \text { H, W } \\ \text { XXXXXXXXXXXXX } \end{gathered}$ |  | BTOPDUT/BTOPRLH/BTODTBF [R/W] <br> H, W XXXXXXXX XXXXXXXX |  |  |
| 00016CH | - |  |  |  | (Reserved) |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 000170н | $\begin{gathered} \hline \text { AICR2 [R/W] B, H } \\ -----1111111 \end{gathered}$ |  | - |  | 8/10-bit A/D converter 2 (8 channels) |
| 000174н | $\begin{gathered} \hline \text { ADCS2 [R/W, W] } \\ \text { B } \\ 0000000- \end{gathered}$ | - | $\begin{gathered} \hline \text { ADCH2 [R/W] } \\ \text { B, H } \\ 000000000 \end{gathered}$ | $\begin{gathered} \hline \text { ADMD2 [R/W] } \\ \text { B, H } \\ 00001111 \end{gathered}$ |  |
| 000178н | ADCD002 [R] B, H, W 10----XX XXXXXXXX |  | ADCD012 [R] B, H, W 10----XX XXXXXXXX |  |  |
| 00017Сн | ADCD022 [R] B, H, W 10----XX XXXXXXXX |  | ADCD032 [R] B, H, W 10----XX XXXXXXXX |  |  |
| 000180н | ADCD042 [R] B, H, W 10----XX XXXXXXXX |  | ADCD052 [R] B, H, W 10----XX XXXXXXXX |  |  |
| 000184н | ADCD062 [R] B, H, W 10----XX XXXXXXXX |  | ADCD072 [R] B, H, W 10----XX XXXXXXXX |  |  |
| $\begin{aligned} & \hline 000188 \mathrm{H} \\ & \text { to } \\ & 0001 \mathrm{FC} \end{aligned}$ | - |  |  |  | (Reserved) |
| 000200н | DMACAO [R/W] B, H, W * <br> 00000000 ----XXXX XXXXXXXX XXXXXXXX |  |  |  | DMAC |
| 000204н | $\begin{gathered} \text { DMACB0 [R/W] B, H, W } \\ 0000000000000000 \text { XXXXXXXX XXXXXXXX } \end{gathered}$ |  |  |  |  |
| 000208н | DMACA1 [R/W] B, H, W * 00000000 ----XXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 00020С ${ }_{\text {н }}$ | DMACB1 [R/W] B, H, W 0000000000000000 XXXXXXXX XXXXXXXX |  |  |  |  |
| 000210н | DMACA2 [R/W] B, H, W * <br> 00000000 ----XXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 000214H | $\begin{gathered} \text { DMACB2 [R/W] B, H, W } \\ 0000000000000000 \text { XXXXXXXX XXXXXXXX } \end{gathered}$ |  |  |  |  |
| 000218 | DMACA3 [R/W] B, H, W * <br> 00000000 -----XXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 00021Сн | DMACB3 [R/W] B, H, W0000000000000000 XXXXXXXX XXXXXXXX |  |  |  |  |
| 000220н | DMACA4 [R/W] B, H, W * 00000000 -----XXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 000224н | DMACB4 [R/W] B, H, W 0000000000000000 XXXXXXXX XXXXXXXX |  |  |  |  |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| $\begin{gathered} \text { 000228н } \\ \text { to } \\ 00023 \text { C }_{H} \end{gathered}$ | - |  |  |  | (Reserved) |
| 000240н | $\begin{gathered} \text { DMACR [R/W] B, H, W } \\ 0 \text {--------------------- } \end{gathered}$ |  |  |  | DMAC |
| $\begin{gathered} \text { 000244H } \\ \text { to } \\ 0003 \text { C. }_{H} \end{gathered}$ | - |  |  |  | (Reserved) |
| 0003FOH | BSDO [W] Wxxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx |  |  |  |  |
| 0003F4н | BSD1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  | Bit search |
| 0003F8H | BSDC [W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  | module |
| 0003FCH | BSRR [R] W WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 000400 | - |  |  |  | (Reserved) |
| 000404н | - |  | $\begin{gathered} \hline \text { DDR8 [R/W] } \\ \text { B } \\ -0000000 \end{gathered}$ | - | Port direction register |
| 000408н | $\begin{gathered} \text { DDRA [R/W] } \\ \text { B, H } \\ ----00- \end{gathered}$ | $\begin{gathered} \text { DDRB [R/W] } \\ \text { B, H } \\ 0000---- \end{gathered}$ | $\begin{gathered} \hline \text { DDRC }[\mathrm{R} / \mathrm{W}] \\ \mathrm{B} \\ 00000000 \end{gathered}$ | - |  |
| 00040С ${ }^{\text {H }}$ | - |  | $\begin{gathered} \text { DDRG [R/W] } \\ \text { B, H } \\ --000000 \end{gathered}$ | $\begin{gathered} \text { DDRH [R/W] } \\ \text { B, H } \\ ----000 \end{gathered}$ |  |
| 000410н | $\begin{gathered} \text { DDRJ [R/W] } \\ \text { B } \\ ----0000 \end{gathered}$ | - | $\begin{gathered} \text { DDRL [R/W] } \\ \text { B } \\ ----000 \end{gathered}$ | - |  |
| 000414н | $\begin{gathered} \text { DDRP [R/W] } \\ \text { B, H } \\ --000000 \end{gathered}$ | $\begin{gathered} \hline \text { DDRQ [R/W] } \\ \text { B, H } \\ --000000 \end{gathered}$ | - |  |  |
| $\begin{aligned} & 000418 \mathrm{H} \\ & \text { to } \\ & 00042 \mathrm{H}_{\mathrm{H}} \end{aligned}$ | - |  |  |  | (Reserved) |
| 000424н | - |  | PFR8 [R/W] B $-000----$ | - | Port function register |
| 000428 ${ }^{\text {H }}$ | - |  |  |  | (Reserved) |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 00042Сн | - |  | $\begin{gathered} \hline \text { PFRG }[R / W] \\ \text { B, H } \\ --0-00-0 \end{gathered}$ | $\begin{gathered} \hline \text { PFRH [R/W] } \\ \text { B, H } \\ ----0-0 \end{gathered}$ | Port function register |
| 000430н | $\begin{gathered} \hline \text { PFRJ }[R / W] \\ B \\ ---0-0- \end{gathered}$ | - |  |  |  |
| 000434н | - | $\begin{gathered} \hline \text { PFRQ }[R / W] \\ B \\ --000000 \end{gathered}$ | - |  |  |
| $\begin{array}{l\|} \hline 000438 \mathrm{H}, \\ 00043 \mathrm{CH} \end{array}$ | - |  |  |  | (Reserved) |
| 000440н | $\begin{gathered} \text { ICRO0 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR01 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR02 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR03 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | Interrupt controller |
| 000444H | $\begin{gathered} \hline \text { ICR04 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR05 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR06 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR07 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ |  |
| 000448н | $\begin{gathered} \text { ICR08 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR09 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR10 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR11 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ |  |
| 00044Сн | $\begin{gathered} \text { ICR12 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR13 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR14 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR15 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ |  |
| 000450н | $\begin{gathered} \text { ICR16 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR17 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR18 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR19 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ |  |
| 000454H | - |  |  |  | (Reserved) |

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 000458н | $\begin{gathered} \hline \text { ICR24 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR25 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR26 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR27 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | Interrupt controller |
| 00045CH | $\begin{gathered} \hline \text { ICR28 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR29 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR30 }[\mathrm{R} / \mathrm{W}, \mathrm{R}] \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR31 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ |  |
| 000460н | - | $\begin{gathered} \hline \text { ICR33 [R/W, R] } \\ \text { B } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR34 [R/W, R] } \\ \text { B, H } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR35 [R/W, R] } \\ \text { B, H } \\ --11111 \end{gathered}$ |  |
| 000464н | $\begin{gathered} \text { ICR36 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR37 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR38 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR39 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ |  |
| 000468 ${ }^{\text {H }}$ | - | $\begin{gathered} \hline \text { ICR41 [R/W, R] } \\ \text { B } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR42 [R/W, R] } \\ \text { B,H } \\ --11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR43 [R/W, R] } \\ \text { B, H } \\ --11111 \end{gathered}$ |  |
| 00046CH | $\begin{gathered} \text { ICR44 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \text { ICR45 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR46 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ | $\begin{gathered} \hline \text { ICR47 [R/W, R] } \\ \text { B, H, W } \\ ---11111 \end{gathered}$ |  |
| $\begin{gathered} 000470_{\mathrm{H}} \\ \text { to } \\ 00047 \text { CH }^{2} \end{gathered}$ | - |  |  |  | (Reserved) |
| 000480н | $\begin{gathered} \text { RSRR [R/W] } \\ \text { B, H, W } \\ 1-0-0-00 \end{gathered}$ | $\begin{gathered} \hline \text { STCR [R/W] } \\ \text { B, H, W } \\ 001100-1 \end{gathered}$ | $\begin{aligned} & \text { TBCR [R/W] } \\ & \text { B, H, W } \\ & 00 X X X-00 \end{aligned}$ | CTBR [W] <br> B, H, W <br> XXXXXXXX | Clock control block |
| 000484н | $\begin{gathered} \text { CLKR [R/W] } \\ \text { B } \\ -000-000 \end{gathered}$ | - | $\begin{gathered} \text { DIVRO [R/W] } \\ \text { B } \\ 00000011 \end{gathered}$ | - |  |
| $\begin{gathered} \hline 000488 \mathrm{H} \\ \text { to } \\ 00050 \text { CH }^{2} \end{gathered}$ | - |  |  |  | (Reserved) |
| 000510 | - | $\begin{gathered} \hline \text { AICR1 [R/W] } \\ \text { B } \\ ---1111 \end{gathered}$ |  |  | $\begin{gathered} \text { 8/10-bit } \\ \text { A/D } \\ \text { converter } 1 \\ \text { (4 channels) } \end{gathered}$ |
| 000514н | $\begin{gathered} \text { ADCS1 [R/W, W] } \\ \text { B } \\ 0000000- \end{gathered}$ | - | $\begin{gathered} \text { ADCH1 [R/W] } \\ \text { B, H } \\ --00--00 \end{gathered}$ | $\begin{gathered} \text { ADMD1 [R/W] } \\ \text { B, H } \\ 00001111 \end{gathered}$ |  |
| 000518 ${ }^{\text {H }}$ | ADCD001 [R] B, H, W 10----XX XXXXXXXX |  | ADCD011 [R] B, H, W 10----XX XXXXXXXX |  |  |
| 00051CH | ADCD021 [R] B, H, W 10----XX XXXXXXXX |  | ADCD031 [R] B, H, W 10----XX XXXXXXXX |  |  |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| $\begin{gathered} \text { O0052OH } \\ \text { to } \\ 00053 \mathrm{C}_{\mathrm{H}} \end{gathered}$ | - |  |  |  | (Reserved) |
| 000540 | $\begin{gathered} \text { RCR10 [W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | $\begin{gathered} \text { RCROO [W] } \\ \text { B, H, W } \\ \text { XXXXXXXX } \end{gathered}$ | $\begin{aligned} & \text { UDCR10 [R] } \\ & \text { B, H, W } \\ & 00000000 \end{aligned}$ | $\begin{aligned} & \hline \text { UDCR00 [R] } \\ & \text { B, H, W } \\ & 00000000 \end{aligned}$ | Up/down counter 0 |
| 000544H | $\begin{gathered} \hline \text { CCRHO [R/W] } \\ \text { B, H } \\ 000000000 \end{gathered}$ | $\begin{gathered} \hline \text { CCRLO [R/W, R] } \\ \text { B, H } \\ -0001000 \end{gathered}$ | - | $\begin{gathered} \text { CSRO [R/W, R] } \\ \text { B } \\ 00000000 \end{gathered}$ |  |
| $\begin{gathered} 000548 \mathrm{H} \\ \text { to } \\ 00057 \mathrm{C}_{\mathrm{H}} \end{gathered}$ | - |  |  |  | (Reserved) |
| 000580 ${ }^{\text {H }}$ | BT1TMR [R] B, H, W 0000000000000000 |  | BT1TMCR [R/W] B, H, W -0000000 00000000 |  | Base timer 1 |
| 0005844 | - | BT1STC [R/W] B 00000000 | - |  |  |
| 000588H | $\begin{gathered} \text { BT1PCSR/BT1PRLL [R/W] } \\ H, W \\ \text { XXXXXXXX XXXXXXXX } \end{gathered}$ |  | BT1PDUT/BT1PRLH/BT1DTBF [R/W] H, W XXXXXXXX XXXXXXXX |  |  |
| $00058 \mathrm{C}_{\mathrm{H}}$ <br> to 000600н | - |  |  |  | (Reserved) |
| 000604H | - |  | $\begin{gathered} \hline \text { PCR8 [R/W] } \\ \text { B } \\ -0000000 \end{gathered}$ | - | Pull-up resistor control register |
| 000608 ${ }^{\text {H }}$ | $\begin{gathered} \text { PCRA [R/W] } \\ \text { B, H } \\ ----00- \end{gathered}$ | $\begin{gathered} \hline \text { PCRB [R/W] } \\ \text { B, H } \\ 0000---- \end{gathered}$ | $\begin{gathered} \hline \text { PCRC }[R / W] \\ B \\ 00000000 \end{gathered}$ | - |  |
| 00060CH | - |  | PCRG [R/W] B, H --000000 | $\begin{gathered} \text { PCRH [R/W] } \\ \text { B, H } \\ ---000 \\ \hline \end{gathered}$ |  |
| 000610 ${ }^{\text {H }}$ | $\begin{gathered} \hline \text { PCRJ [R/W] } \\ \text { B } \\ ---0000 \end{gathered}$ | - | $\begin{gathered} \hline \text { PCRL }[\mathrm{R} / \mathrm{W}] \\ \mathrm{B} \\ ----000 \end{gathered}$ | - |  |
| 000614H | $\begin{gathered} \text { PCRP [R/W] } \\ \text { B, H } \\ --000000 \end{gathered}$ | $\begin{gathered} \text { PCRQ }[R / W] \\ B, H \\ --000000 \end{gathered}$ | - |  |  |
| $\begin{gathered} 000618 \mathrm{H} \\ \text { to } \\ 000 \text { FFCH } \end{gathered}$ | - |  |  |  | (Reserved) |

(Continued)

## MB91490 Series

| Address | Register |  |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 |  | +3 |  |
| 001000н | DMASAO [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  | DMAC |
| 001004 | DMADAO [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |  |
| 001008 ${ }_{\text {H }}$ | DMASA1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |  |
| 00100С ${ }_{\text {н }}$ | DMADA1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |  |
| 001010 ${ }^{\text {H }}$ | DMASA2 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |  |
| 001014 | DMADA2 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |  |
| 001018 ${ }^{\text {H }}$ | DMASA3 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |  |
| 00101CH | DMADA3 [R/W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |  |
| 001020 ${ }^{\text {H }}$ | DMASA4 [R/W] W <br>  |  |  |  |  |  |
| 001024 | DMADA4 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |  |
| $\begin{gathered} 001028 \mathrm{H} \\ \text { to } \\ 006 \mathrm{FFC}_{\mathrm{H}} \end{gathered}$ | - |  |  |  |  | (Reserved) |
| 007000 ${ }_{\text {H }}$ | $\begin{gathered} \text { FLCR [R/W, R] B } \\ ----\mathrm{X}-\mathrm{O} \end{gathered}$ |  | - |  |  | Flash memory |
| 007004H | $\begin{gathered} \text { FLWC [R/W] B } \\ --11-011 \end{gathered}$ |  | - |  |  |  |
| $\begin{gathered} \text { 007008H } \\ \text { to } \\ 00701 \mathbf{H}_{\mathrm{H}} \end{gathered}$ | - |  |  |  |  |  |
| 007014 <br> to 00701C | - |  |  |  |  | (Reserved) |
| 007020 ${ }^{\text {H }}$ | WREN [R/W] H0000000000000000 |  |  | - |  | Wild register control block |
| $\begin{gathered} \text { 007024н } \\ \text { to } \\ 00702 \text { C }_{H} \end{gathered}$ | - |  |  |  |  | (Reserved) |

(Continued)

## MB91490 Series

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 007030н | WA00 [R/W] W ------------XXXX XXXXXXXX XXXXXX-- |  |  |  | Wild register control block |
| 007034 | WD00 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 007038 | WA01[R/W] W ------------XXXX XXXXXXXX XXXXXX-- |  |  |  |  |
| 00703Сн | WD01 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 007040н | WA02 [R/W] W ------------XXXX XXXXXXXX XXXXXX-- |  |  |  |  |
| 007044H | WD02 [R/W] W xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx |  |  |  |  |
| 007048H | WA03 [R/W] W ------------XXXX XXXXXXXX XXXXXX-- |  |  |  |  |
| 00704CH | WD03 [R/W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 007050н |  | ------------XXX |  |  |  |
| 007054H |  | XXXXXXXX XXX | xxx |  |  |
| 007058H |  | ------------XXX |  |  |  |
| 00705CH |  | xxxxxxxx xx> | xxx |  |  |
| 007060н |  | ------------XXX |  |  |  |
| 007064 |  | XXXXXXXX XX> |  |  |  |
| 007068н |  |  |  |  |  |
| 00706CH |  | XXXXXXXX XX) | xxx |  |  |
| 007070н |  | -------- ----XXX | $x \mathrm{xx}$ |  |  |
| 007074 | WD08 [R/W] W <br> XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |

(Continued)

## MB91490 Series

(Continued)

| Address | Register |  |  |  | Block |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | +0 | +1 | +2 | +3 |  |
| 007078 ${ }^{\text {H }}$ | WA09 [R/W] W------------XXXX XXXXXXXX XXXXXX-- |  |  |  | Wild register control block |
| 00707С ${ }_{\text {H }}$ | WD09 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 007080н | WA10 [R/W] W ------------XXXX XXXXXXXX XXXXXX-- |  |  |  |  |
| 007084н | WD10 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 007088 ${ }_{\text {H }}$ | WA11[R/W] W ------------XXXX XXXXXXXX XXXXXX-- |  |  |  |  |
| 00708CH | WD11[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 007090н | WA12 [R/W] W -------- ----XXXX XXXXXXXXXXXXX-- |  |  |  |  |
| 007094н | WD12 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 007098н | WA13 [R/W] W -------- ----XXXX XXXXXXX XXXXXX-- |  |  |  |  |
| 00709С ${ }_{\text {¢ }}$ | WD13 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 0070AOH | WA14 [R/W] W -XXXX XXXXXXXX XXXXXX-- |  |  |  |  |
| 0070A44 | WD14 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| 0070A8H | WA15 [R/W] W ------------XXXX XXXXXXXX XXXXXX-- |  |  |  |  |
| 0070ACH | WD15 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX |  |  |  |  |
| $\begin{aligned} & \text { O070BOн } \\ & \text { to } \\ & \text { OFFFFCH } \end{aligned}$ | - |  |  |  | (Reserved) |

*: The lower 16 bits (DTC15 to DTC0) of DMACA0 to DMACA4 cannot be accessed as bytes.
Notes: - Data is undefined in reserved or (-) area.

- Do not execute read modify write (RMW) instruction on registers having a write-only bit.
- The initial values are varied depending on the product series. Please refer to the hardware manual of MB91490 series for more details.


## MB91490 Series

## ■ INTERRUPT VECTOR

| Interrupt source | Interrupt number |  | Interrupt level | Offset | TBR default address |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Decimal | Hexadecimal |  |  |  |
| Reset | 0 | 00 | - | 3FCH | 000FFFFCH |
| Mode vector | 1 | 01 | - | 3F8н | 000FFFFF8н |
| System reserved | 2 | 02 | - | 3F4H | 000FFFFF4н |
| System reserved | 3 | 03 | - | 3F0н | 000FFFFFOн |
| System reserved | 4 | 04 | - | ЗЕСн | 000FFFECH |
| System reserved | 5 | 05 | - | 3Е8н | 000FFFE8н |
| System reserved | 6 | 06 | - | 3E4H | 000FFFEE4 |
| Coprocessor absent trap | 7 | 07 | - | 3Е0н | 000FFFEE0н |
| Coprocessor error trap | 8 | 08 | - | 3DCH | 000FFFDC ${ }_{\text {н }}$ |
| INTE instruction | 9 | 09 | - | 3D8H | 000FFFD8 ${ }_{\text {н }}$ |
| System reserved | 10 | OA | - | 3D4н | 000FFFD 4 н |
| System reserved | 11 | 0B | - | 3D0н | 000FFFFD0н |
| Step trace trap | 12 | OC | - | 3СС ${ }_{\text {H }}$ | 000FFFCCH |
| NMI request (tool) | 13 | OD | - | 3С8н | 000FFFFC8н |
| Undefined instruction exception | 14 | OE | - | 3С4 ${ }_{\text {н }}$ | 000FFFFC4н |
| NMI request | 15 | OF | - | 3С0н | 000FFFFCOH |
| External interrupt 0 | 16 | 10 | ICR00 | ЗВСн | 000FFFBC ${ }_{\text {н }}$ |
| External interrupt 1 | 17 | 11 | ICR01 | 3В8н | 000FFFB8н |
| External interrupt 2 | 18 | 12 | ICR02 | 3B4 ${ }_{\text {H }}$ | 000FFFB44 |
| External interrupt 3 | 19 | 13 | ICR03 | 3В0н | 000FFFBB ${ }_{\text {н }}$ |
| External interrupt 4 | 20 | 14 | ICR04 | ЗАС ${ }_{\text {H }}$ | 000FFFACH |
| External interrupt 5 | 21 | 15 | ICR05 | 3А8н | 000FFFA8н |
| External interrupt 6 | 22 | 16 | ICR06 | 3A4H | 000FFFA4 ${ }_{\text {н }}$ |
| Low voltage detection interrupt | 23 | 17 | ICR07 | 3АО ${ }^{\text {¢ }}$ | 000FFFAOн |
| Reload timer 0 | 24 | 18 | ICR08 | 39Сн | 000FFF9CH |
| Reload timer 1 | 25 | 19 | ICR09 | 398н | 000FFF98н |
| Base timer 0 (source 0/source 1) | 26 | 1A | ICR10 | 394 | 000FFF94н |
| ```Multi-function serial interface 0 (UART transmission completed/reception completed//2C status)``` | 27 | 1B | ICR11 | 390н | 000FFF90н |
| Multi-function serial interface 1 (UART transmission completed/reception completed $/ I^{2} \mathrm{C}$ status) | 28 | 1 C | ICR12 | 38Сн | 000FFF8Cн |
| Base timer 1 (source 0/source 1) | 29 | 1D | ICR13 | 388н | 000FFF88\% |

(Continued)

## MB91490 Series

| Interrupt source | Interrupt number |  | Interrupt level | Offset | TBR default address |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Decimal | Hexadecimal |  |  |  |
| Up/down counter 0 | 30 | 1E | ICR14 | 384н | 000FFF844 |
| DTTIO | 31 | 1F | ICR15 | 380 H | 000FFF80н |
| DMAC0 (end/error) | 32 | 20 | ICR16 | 37 CH | 000FFF7CH |
| DMAC1 (end/error) | 33 | 21 | ICR17 | 378 ${ }^{\text {+ }}$ | 000FFF78н |
| DMAC2/3/4 (end/error) | 34 | 22 | ICR18 | 374 | 000FFF74 |
| Multi-function serial interface 2 (UART transmission completed/reception completed $/ \mathrm{I}^{2} \mathrm{C}$ status) | 35 | 23 | ICR19 | 370 | 000FFF70н |
| System reserved | 36 | 24 | - | 36CH | 000FFF6CH |
| System reserved | 37 | 25 | - | 368H | 000FFF68н |
| System reserved | 38 | 26 | - | 364 | 000FFF64н |
| System reserved | 39 | 27 | - | 360 ${ }^{\text {H}}$ | 000FFF60н |
| PPG0/PPG1 | 40 | 28 | ICR24 | $35 \mathrm{C}_{\mathrm{H}}$ | 000FFF5CH |
| PPG2/PPG3 | 41 | 29 | ICR25 | 358H | 000FFF58н |
| PPG4/PPG5 | 42 | 2A | ICR26 | 354 | 000FFF54н |
| PPG6/PPG7 | 43 | 2B | ICR27 | 350H | 000FFF50н |
| Wave form generator 0 (underflow) | 44 | 2C | ICR28 | 34 CH | 000FFF4Cн |
| Wave form generator 1 (underflow) | 45 | 2D | ICR29 | 348H | 000FFF48н |
| Wave form generator 2 (underflow) | 46 | 2E | ICR30 | 344 | 000FFF44 ${ }^{\text {¢ }}$ |
| Timebase timer overflow | 47 | 2 F | ICR31 | 340H | 000FFF40н |
| System reserved | 48 | 30 | - | 33CH | 000FFF3C ${ }_{\text {H }}$ |
| Free-run timer 0 (compare clear) | 49 | 31 | ICR33 | 338 ${ }^{\text {H }}$ | 000FFF38н |
| Free-run timer 0 (zero detection) | 50 | 32 | ICR34 | 334 | 000FFF34 |
| Free-run timer 1 (compare clear) | 51 | 33 | ICR35 | 330 ${ }^{\text {¢ }}$ | 000FFF30н |
| Free-run timer 1 (zero detection) | 52 | 34 | ICR36 | 32С ${ }_{\text {н }}$ | 000FFF2C ${ }_{\text {н }}$ |
| Free-run timer 2 (compare clear) | 53 | 35 | ICR37 | 328H | 000FFF28н |
| Free-run timer 2 (zero detection) | 54 | 36 | ICR38 | 324 ${ }_{\text {н }}$ | 000FFF24 ${ }^{\text {H }}$ |
| 8/10-bit A/D converter 2 | 55 | 37 | ICR39 | 320H | 000FFF20н |
| System reserved | 56 | 38 | - | 31С ${ }_{\text {H }}$ | 000FFF1C ${ }_{\text {н }}$ |
| 8/10-bit A/D converter 1 | 57 | 39 | ICR41 | 318H | 000FFF18н |
| ICU0/ICU1 (capture) | 58 | 3A | ICR42 | 314 | 000FFF14н |
| ICU2/ICU3 (capture) | 59 | 3B | ICR43 | 310 H | 000FFF10н |
| OCU0/OCU1 (match) | 60 | 3C | ICR44 | 30 CH | 000FFFOCH |

(Continued)

## MB91490 Series

(Continued)

| Interrupt source | Interrupt number |  | Interrupt level | Offset | TBR default address |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Decimal | Hexadecima |  |  |  |
| OCU2/OCU3 (match) | 61 | 3D | ICR45 | 308н | 000FFF08H |
| OCU4/OCU5 (match) | 62 | 3E | ICR46 | 304н | 000FFF04н |
| Interrupt delay source bit | 63 | 3F | ICR47 | 300н | 000FFFOOH |
| System reserved (Used by REALOS) | 64 | 40 | - | 2FCH | 000FFEFCH |
| System reserved (Used by REALOS) | 65 | 41 | - | 2F8H | 000FFEF8н |
| System reserved | 66 | 42 | - | 2F4н | 000FFEF4н |
| System reserved | 67 | 43 | - | 2FOH | 000FFEFOH |
| System reserved | 68 | 44 | - | 2ECH | 000FFEEC ${ }_{\text {H }}$ |
| System reserved | 69 | 45 | - | 2Е8н | 000FFEE8н |
| System reserved | 70 | 46 | - | 2E4H | 000FFEE4н |
| System reserved | 71 | 47 | - | 2ЕОн | 000FFEEOн |
| System reserved | 72 | 48 | - | 2DCH | 000FFEDCH |
| System reserved | 73 | 49 | - | 2D8н | 000FFED8н |
| System reserved | 74 | 4A | - | 2D4н | 000FFED4 |
| System reserved | 75 | 4B | - | 2DOH | 000FFEDOH |
| System reserved | 76 | 4C | - | 2СС ${ }_{\text {¢ }}$ | 000FFECCH |
| System reserved | 77 | 4D | - | 2С8н | 000FFEC8H |
| System reserved | 78 | 4E | - | 2С4н | 000FFEC4 |
| System reserved | 79 | 4F | - | 2 COH | 000FFECOH |
| Used by INT instruction | $\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$ | $\begin{aligned} & 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$ | - | $\begin{gathered} 2 \mathrm{BC} \mathrm{H} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$ | $\begin{aligned} & \text { O00FFEBCH } \\ & \text { to } \\ & 000 \mathrm{FFCOO} \end{aligned}$ |

## MB91490 Series

## PIN STATUS IN EACH CPU STATE

Terms used as the status of pins mean as follows.

- Input enabled

Means that the input function can be used.

- Input disabled

Indicates that the input function cannot be used.

- Input fixed to "0"

A state of a pin, in which " 0 " is transmitted to internal circuitry, with the external input shut off by the input gate adjacent to the pin.

- Output Hi-Z

Means to place a pin in a high impedance state by disabling the pin driving transistor from driving.

- Preserving the previous state

Means to output the state existing immediately prior to entering this mode.
That is, to output according to an internal resource with an output when it is operating or to preserve an output when the output is provided, for example, as a port.

- Input enabled when external interrupt function selected and enabled Inputs are allowed only when the pin is configured as an external interrupt request input pin and the external interrupt request is enabled.


## MB91490 Series

- List of pin status

| Pin name | Function | During initialization |  | In sleep mode | In stop mode |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | INITX = "L"* 1 <br> or when Low voltage detection reset occurs | $\begin{aligned} & \text { INITX }=\text { " } \mathrm{H} \text { "*2 } \\ & \text { or when Low } \\ & \text { voltage } \\ & \text { detection } \\ & \text { reset is } \\ & \text { released } \end{aligned}$ |  | $\mathrm{HIZ}=0$ | $H I Z=1$ |
| NMIX | NMIX | Input enabled |
| P80 to P83 | INTO to INT3 | Output Hi-Z/ Input disabled | Output Hi-Z/ Input enabled | Input enabled | Input enabled | Output Hi-Z/ Input "0" fixed <br> Input enabled when interrupt function selected and enabled |
| P84 | INT4/PPG4 |  |  |  |  |  |
| P85 | INT5/PPG5 |  |  |  |  |  |
| P86 | INT6/PPG6 |  |  |  |  |  |
| PA1, PA2 | ADTG1, ADTG2 | Output Hi-Z/ Input disabled | Output Hi-Z/ Input enabled | Retention of the immediately prior state | Retention of the immediately prior state | Output Hi-Z/ Input "0" fixed |
| PB4 to PB7 | AN1-0 to AN1-3 | Output Hi-Z/ Input disabled | Output Hi-Z/ Input "0" fixed | Retention of the immediately prior state | Retention of the immediately prior state | Output Hi-Z/ Input "0" fixed |
| PC0 to PC7 | AN2-0 to AN2-7 |  |  |  |  |  |
| PG0, PG3 | SCK0, SCK1 | Output Hi-Z/ Input disabled | Output Hi-Z/ Input enabled | Retention of the immediately prior state | Retention of the immediately prior state | Output Hi-Z/Input "0" fixed |
| PG1, PG4 | SIN0, SIN1 |  |  |  |  |  |
| PG2, PG5 | SOT0, SOT1 |  |  |  |  |  |
| PH0 | SCK2 |  |  |  |  |  |
| PH1 | SIN2 |  |  |  |  |  |
| PH2 | SOT2 |  |  |  |  |  |
| PJ0, PJ2 | TINO, TIN1 | Output Hi-Z/ Input disabled | Output $\mathrm{Hi}-\mathrm{Z} /$ Input enabled | Retention of the immediately prior state | Retention of the immediately prior state | Output Hi-Z/Input "0" fixed |
| PJ1, PJ3 | $\begin{aligned} & \text { TOUTO, } \\ & \text { TOUT1 } \end{aligned}$ |  |  |  |  |  |
| PLO | AIN0 | Output Hi-Z/ Input disabled | Output Hi-Z/ Input enabled | Retention of the immediately prior state | Retention of the immediately prior state | Output $\mathrm{Hi}-\mathrm{Z} / \mathrm{In}$ put "0" fixed |
| PL1 | BIN0 |  |  |  |  |  |
| PL2 | ZINO |  |  |  |  |  |
| PP0 to PP3 | ICO to IC3 | Output Hi-Z/ Input disabled | Output Hi-Z/ Input enabled | Retention of the immediately prior state | Retention of the immediately prior state | Output Hi-Z/Input "0" fixed |
| PP4 | CKIO |  |  |  |  |  |
| PP5 | DTTIO |  |  |  |  |  |
| PQ0 to PQ5 | RTO0 to RTO5 |  |  |  |  |  |

[^0]
## MB91490 Series

## ■ ELECTRICAL CHARACTERISTICS

## 1. Absolute Maximum Ratings

| Parameter | Symbol | Rating |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Power supply voltage*1 | Vcc | Vss - 0.5 | Vss +6.0 | V |  |
| Analog power supply voltage ${ }^{* 1, * 2, * 6}$ | AVCC10 | Vss - 0.5 | V ss +6.0 | V |  |
| Analog reference voltage*7 | AVRH2 | Vss - 0.5 | Vss +6.0 | V |  |
| Input voltage*1 | $V_{1}$ | Vss - 0.3 | $\mathrm{Vcc}+0.3$ | V |  |
| Analog pin input voltage*1 | VIA | Vss - 0.3 | $\mathrm{AV} \mathrm{cc}+0.3$ | V |  |
| Output voltage*1 | Vo | Vss - 0.3 | $\mathrm{Vcc}+0.3$ | V |  |
| "L" level maximum output current*3 | loL | - | 10 | mA |  |
| "L" level average output current*4 | lolav | - | 4 | mA | Except port Q0 to Q5 |
|  |  |  | 12 | mA | Port Q0 to Q5 |
| "L" level total maximum output current | SloL | - | 100 | mA |  |
| "L" level total average output current*5 | $\Sigma$ lolav | - | 50 | mA |  |
| "H" level maximum output current ${ }^{\star 3}$ | Іон | - | -10 | mA |  |
| "H" level average output current *4 | lohav | - | -4 | mA | Except port Q0 to Q5 |
|  |  |  | -12 | mA | Port Q0 to Q5 |
| " H " level total maximum output current | $\Sigma$ Іон | - | -100 | mA |  |
| "H" level total average output current*5 | $\Sigma$ Іонav | - | -50 | mA |  |
| Power consumption | Po | - | 430 | mW |  |
| Storage temperature | Tsta | -55 | +125 | ${ }^{\circ} \mathrm{C}$ |  |

*1: The parameter is based on Vss $=\mathrm{AVSS} 10=0 \mathrm{~V}$.
*2 : Be careful not to exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$, for example, when the power is turned on. Be careful to set AVCC10 equal Vcc , for example, when the power is turned on.
*3 : The maximum output current is the peak value for a single pin.
*4: The average output is the average current for a single pin over a period of 100 ms .
*5: The total average output current is the average current for all pins over a period of 100 ms .
*6 : AVCC10 is the analog supply voltage for the 8/10-bit A/D converter.
*7 : AVRH2 is the analog reference voltage for the 8/10-bit A/D converter.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

## MB91490 Series

## 2. Recommended Operating Conditions

$$
(\mathrm{Vss}=\mathrm{AVSS} 10=0.0 \mathrm{~V})
$$

| Parameter | Symbol | Value |  | Unit | Remarks |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Max |  |  |
| Power supply voltage | V cc | 2.7 | 5.5 | V |  |
| Analog power supply voltage | AVCC10 | $\mathrm{V}_{\mathrm{ss}}+2.7$ | $\mathrm{~V}_{\mathrm{ss}}+5.5$ | V | For all 8/10-bit A/D converters <br> (common use) |
| Analog reference voltage | AVRH2 | AVSS10 | AVCC10 | V | For all 8/10-bit A/D converters <br> (common use) |
| Operating temperature | $\mathrm{T}_{\mathrm{A}}$ | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |  |

Note: During power-on, it takes approximately $600 \mu$ s for the internal power supply to stabilize after the Vcc power supply has stabilized. Continue to assert the INITX pin during this period.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

## MB91490 Series

## 3. DC Characteristics

( $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 5.5 V , $\mathrm{Vss}=\mathrm{AVSS} 10=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

| Parameter | Symbol | Pin Name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| " H " level input voltage | Vihs | CMOS hysteresis input pin | - | $\mathrm{Vcc} \times 0.8$ | - | Vcc | V |  |
| "L" level input voltage | Vıs | CMOS hysteresis input pin | - | Vss | - | $\mathrm{V} \mathrm{cc} \times 0.2$ | V |  |
| " H " level output voltage | Vон1 | Except port | $\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loH}=4 \mathrm{~mA} \end{aligned}$ | Vcc - 0.5 | - | - | V |  |
|  | Vон2 | Port Q0 to Q5 | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \\ & \mathrm{loH}=12 \mathrm{~mA} \end{aligned}$ | Vcc - 0.5 | - | - | V | *1 |
|  |  |  | $\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \\ & \mathrm{loH}=4 \mathrm{~mA} \end{aligned}$ | Vcc - 0.5 | - | - | V | *2 |
| "L" level output voltage | Volı | Except port Q0 to Q5 | $\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loL}=4 \mathrm{~mA} \end{aligned}$ | - | - | Vss +0.4 | V |  |
|  | Vol2 | Port Q0 to Q5 | $\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loL}=12 \mathrm{~mA} \end{aligned}$ | - | - | Vss +0.4 | V | *1 |
|  |  |  | $\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \\ & \mathrm{loL}=4 \mathrm{~mA} \end{aligned}$ | - | - | Vss +0.4 | V | *2 |
| Input leak current | l ı | - | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{\mathrm{I}}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$ | -5 | - | - | $\mu \mathrm{A}$ |  |
| Pull-up resistance | Rpull | INITX, pull-up pin | - | - | 50 | - | k $\Omega$ |  |
| Power supply current | Icc | VCC | $\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V}, \\ & \mathrm{fc}=20 \mathrm{MHz}, \\ & \mathrm{PLL} \times 4, \\ & \mathrm{CLKB}=80 \mathrm{MHz} \\ & \mathrm{CLKP}=40 \mathrm{MHz} \\ & \text { Flash memory } \\ & 3 \text { wait (4cycle) } \\ & \text { access } \end{aligned}$ | - | 60 | 70 | mA |  |
|  |  |  | $\begin{aligned} & \hline \mathrm{Vcc}=5.0 \mathrm{~V}, \\ & \mathrm{fc}=10 \mathrm{MHz}, \\ & \mathrm{PLL} \times 5, \\ & \mathrm{CLKB}=50 \mathrm{MHz} \\ & \mathrm{CLKP}=25 \mathrm{MHz} \\ & \text { Flash memory } \\ & 2 \text { wait (3cycle) } \\ & \text { access } \end{aligned}$ | - | 45 | 55 | mA |  |
|  |  |  | $\begin{aligned} & \hline \mathrm{Vcc}=5.0 \mathrm{~V}, \\ & \mathrm{fc}=10 \mathrm{MHz}, \\ & \mathrm{PLL} \times 4, \\ & \mathrm{CLKB}=40 \mathrm{MHz} \\ & \mathrm{CLKP}=40 \mathrm{MHz} \\ & \text { Flash memory } \\ & 2 \text { wait (3cycle) } \\ & \text { access } \end{aligned}$ | - | 40 | 50 | mA |  |

(Continued)

## MB91490 Series

(Continued)

| Parameter | Symbol | Pin Name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Power supply current |  |  | $\begin{array}{\|l\|} \hline \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ \mathrm{fc}=20 \mathrm{MHz}, \\ \mathrm{PLL} \times 4, \\ \mathrm{CLKB}=80 \mathrm{MHz} \\ \text { CLKP }=40 \mathrm{MHz} \\ \text { Flash memory } \\ 3 \text { wait (4cycle) } \\ \text { access } \end{array}$ | - | 15 | 22 | mA | In sleep mode |
|  | Iccs | VCC | $\begin{array}{\|l\|} \hline \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ \mathrm{fc}=10 \mathrm{MHz}, \\ \text { PLL } \times 5, \\ \text { CLKB }=50 \mathrm{MHz} \\ \text { CLKP }=25 \mathrm{MHz} \\ \text { Flash memory } \\ 2 \text { wait (3cycle) } \\ \text { access } \end{array}$ | - | 9 | 15 | mA | In sleep mode |
|  |  |  | $\begin{array}{\|l\|} \hline \mathrm{VCc}=5.0 \mathrm{~V}, \\ \mathrm{fc}=10 \mathrm{MHz}, \\ \mathrm{PLL} \times 4, \\ \mathrm{CLKB}=40 \mathrm{MHz} \\ \mathrm{CLKP}=40 \mathrm{MHz} \\ \text { Flash memory } \\ 2 \text { wait (3cycle) } \\ \text { access } \end{array}$ | - | 11 | 17 | mA | In sleep mode |
|  | Ісch | VCC | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$ | - | 60 | 200 | $\mu \mathrm{A}$ | In stop mode |
| Input capacitance | Cin | Other than <br> VCC, VSS, <br> AVSS10, <br> AVCC10, <br> AVRH2 | - | - | 5 | 15 | pF |  |

*1 : Vcc $=4.0 \mathrm{~V}$ to 5.5 V
*2 : Vcc = 2.7 V to 4.0 V

## MB91490 Series

4. Flash Memory Write/Erase Characteristics

| Parameter | Condition | Value |  |  | Unit | Remarks |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  | Typ | Max |  |  | Not including time for internal <br> writing before deletion. |
| Sector erase time <br> (8 Kbytes sectors) | $\mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V}$, <br> $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | 0.5 | 2.0 |  |  |
| Word write time | $\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}$, <br> $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | 6 | 100 | $\mu \mathrm{~s}$ | Not including system-level <br> overhead time. |
| Chip erase time | $\mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V}$, <br> $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | - | 1.8 | 29.5 | s | Not including system-level <br> overhead time. |
| Erase/write cycle | - | 10000 | - | - | cycle |  |
| Flash memory data <br> hold time | - | 10 | - | - | year |  |

## MB91490 Series

## 5. AC Characteristics

(1) Clock Timing

$$
\left(\mathrm{Vcc}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~A}=\mathrm{AVSS} 10=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

| Parameter | $\begin{array}{\|c} \text { Sym- } \\ \text { bol } \end{array}$ | Pin Name | Condition | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max |  |  |
| Clock frequency | fc | $\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$ | - | 10*2 | - | 20 | MHz | When using the PLL within the self-oscillating range, set the multiplier so that the internal clock does not exceed the internal operating clock frequency. |
| Clock cycle time | tc | $\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$ |  | 50*2 | - | 100 | ns |  |
| Internal operating | fcpb | - | When 20 MHz is input as the X0 clock frequency and the oscillator circuit PLL system is set to $\times 4$ multiplication | 5*1 | - | 80 | MHz | CPU |
| clock frequency | f.pp |  |  | 5*1 | - | 40 | MHz | Peripheral |
| Internal operating clock cycle time | tcpb | - |  | 12.5 | - | 200 | ns | CPU |
|  | tcpp |  |  | 25 | - | 200 | ns | Peripheral |

*1: The values assume a gear cycle of $1 / 16$.
*2 : When the PLL is used, the PLL multiplication rate varies depending on the frequency of the clock input to the X0 and X1 pins. Set the PLL multiplication rate so that the PLL output clock frequency is in the range between 40 MHz and 80 MHz .

| PLL Multiplication Rate | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLL output clock frequency <br> when X0 $=10 \mathrm{MHz}$ | (Setting not allowed) |  |  | 40 | 50 | 60 | 70 | 80 |  |
| PLL output clock frequency <br> when X0 $=20 \mathrm{MHz}$ | (Setting <br> not <br> allowed) | 40 | 60 | 80 | (Setting not allowed) |  |  |  |  |

- Conditions for measuring the clock timing ratings



## MB91490 Series

(2) PLL Oscillation stabilization time (LOCK UP TIME)
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=\mathrm{AVSS} 10=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin Name | Condition | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Max |  |  |
| PLL Oscillation stabilization wait time <br> (LOCK UP TIME) | ttock $^{\star}$ | - | - | 600 | - | $\mu \mathrm{s}$ |

* : The length of time to wait for the PLL oscillations to stabilize.
(3) Reset Input Ratings
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AVSS} 10=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin Name | Condition | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| INITX input time (at power-on) | tintı | INITX | - | tpon + tstbl + Oscillation time of oscillator + tc $\times 2^{13}$ | - | ns |
| INITX input time (at STOP) |  |  |  | Oscillation time of oscillator + tc $\times 10$ | - | ns |
| INITX input time (other than the above) |  |  |  | tc $\times 10$ | - | ns |

Notes : • For tc (clock cycle time) , refer to "(1) Clock Timing".

- For tpon and tstbl, refer to " (4) Power on Rise Time /Power-on Stabilization Time Ratings".

(4) Power on Rise Time /Power-on Stabilization Time Ratings




## MB91490 Series

(5) UART Timing
$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AVSS} 10=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin Name | Condition | Value |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |  |
| Serial clock cycle time | tscyc | SCK0 to SCK2 | Internal shift clock mode | 4tcycp | - | ns |  |
| $\begin{aligned} & \text { SCK } \downarrow \rightarrow \\ & \text { SOT delay time } \end{aligned}$ | tslov | SCK0 to SCK2 <br> SOTO to SOT2 |  | -20 | + 20 | ns |  |
| Valid SIN $\rightarrow$ SCK $\uparrow$ | tivs | SCK0 to SCK2 SINO to SIN2 |  | 30 | - | ns | *1 |
|  |  |  |  | 35 | - | ns | *2 |
| SCK $\uparrow \rightarrow$ Valid SIN hold time | tshix | SCK0 to SCK2 SINO to SIN2 |  | 0 | - | ns |  |
| Serial clock "H" pulse width | tshsL | SCK0 to SCK2 | External shift clock mode | $2 \times$ toycp - 10 | - | ns |  |
| Serial clock "L" pulse width | tsısh | SCK0 to SCK2 |  | tcycp + 10 | - | ns |  |
| SCK $\downarrow \rightarrow$ SOT delay time | tstov | SCK0 to SCK2 SOT0 to SOT2 |  | - | 25 | ns | *1 |
|  |  |  |  | - | 35 | ns | *2 |
| Valid SIN $\rightarrow$ SCK $\uparrow$ | tivsh | SCK0 to SCK2 SINO to SIN2 |  | 10 | - | ns |  |
| SCK $\uparrow \rightarrow$ Valid SIN hold time | tshlx | SCK0 to SCK2 SINO to SIN2 |  | 20 | - | ns |  |

*1 : Vcc $=4.0 \mathrm{~V}$ to 5.5 V
*2 : Vcc $=2.7 \mathrm{~V}$ to 4.0 V
Notes : - The above ratings are the AC characteristics for CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.


## MB91490 Series

- Internal shift clock mode

- External shift clock mode



## MB91490 Series

(6) Free-run Timer Clock, Up/Down Counter, Base Timer, and External Interrupt Input Timing

| Parameter | Symbol | Pin Name | Condition | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| Free-run timer input clock pulse width | ttiwh ttiwl | CKIO | - | $4 \times$ tcycp | - | ns |
| Up-down counter input pulse width |  | AINO <br> BINO <br> ZINO |  | $4 \times$ tcycp | - | ns |
| Base timer input pulse width |  | TIN0, TIN1 |  | $4 \times$ tcycp | - | ns |
| External interrupt input pulse width |  | INT0 to INT6 |  | $4 \times$ tcycp | - | ns |
|  |  |  |  | 1.0* | - | $\mu \mathrm{s}$ |

*: In stop mode
Note : tcycp indicates the peripheral clock cycle time.

CKIO
AINO, BINO, ZINO
TINO, TIN1
INTO to INT6


## MB91490 Series

(7) Trigger Input Timing

| Parameter | Symbol | Pin Name | Condition | Value |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max |  |
| Input Capture trigger input | ticwh ticwl | IC0 to IC3 | - | $5 \times$ tcycp | - | ns |
| Base timer trigger input | ttginwh ttainwl | TINO, TIN1 |  | $4 \times$ tcycp | - | ns |
| A/D activation trigger input | tadtgwh tadtgwl | ADTG1, ADTG2 |  | $5 \times$ tcycp | - | ns |

Note : tcycp indicates the peripheral clock cycle time.


## MB91490 Series

(8) $I^{2} \mathrm{C}$ Timing
a. Master Mode

$$
\left(\mathrm{Vcc}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=\mathrm{AVSS} 10=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

| Parameter | $\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$ | Pin name | Condition | Standard Mode |  | Fast Mode*3 |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |  |
| SCL clock frequency | fsct | $\begin{aligned} & \text { SDAn, } \\ & \text { SCLn } \end{aligned}$ | $\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF} \mathrm{~F}^{* 4} \end{aligned}$ | 0 | 100 | 0 | 400 | kHz |  |
| "L" width of the SCL clock | tıow |  |  | 4.7 | - | 1.3 | - | $\mu \mathrm{s}$ |  |
| "H" width of the SCL clock | thigh |  |  | 4.0 | - | 0.6 | - | $\mu \mathrm{s}$ |  |
| Bus free time between STOP and START conditions | tbus |  |  | 4.7 | - | 1.3 | - | $\mu \mathrm{s}$ |  |
| SCL $\downarrow \rightarrow$ SDA output delay time | toldat |  |  | - | $5 \times \operatorname{tcycp}^{* 1}$ | - | $5 \times \operatorname{tcycp}^{* 1}$ | ns |  |
| Setup time for a repeated START condition SCL $\uparrow \rightarrow$ SDA $\downarrow$ | tsusta |  |  | 4.7 | - | 0.6 | - | $\mu \mathrm{s}$ |  |
| Hold time for a repeated START condition SDA $\downarrow \rightarrow$ SCL $\downarrow$ | thdsta |  |  | 4.0 | - | 0.6 | - | $\mu \mathrm{s}$ | The first clock pulse is generated after this. |
| Setup time for STOP condition SCL $\uparrow \rightarrow$ SDA $\uparrow$ | tsusto |  |  | 4.0 | - | 0.6 | - | $\mu \mathrm{s}$ |  |
| SDA Data input hold time (vs. SCL $\downarrow$ ) | thddat |  |  | $2 \times$ tcycp*1 | - | $2 \times$ tcrcp $^{* 1}$ | - | $\mu \mathrm{s}$ |  |
| SDA Data input setup time (vs. SCL $\uparrow$ ) | tsudat |  |  | 250 | - | 100 *2 | - | ns |  |

*1: tcycp indicates the peripheral clock cycle time.
*2 : A Fast-mode $I^{2} \mathrm{C}$-bus device can be used in a Standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement tsudat $\geq 250$ ns must then be met.
If a device does not extend the "L" period of the SCL signal, it is necessary to output the next piece of data to the SDA line 1250 ns (SDA and SCL rising Max time + tsudat) before the SCL line is released.
*3: For use at over 100 kHz , set the peripheral clock to at least 6 MHz .
*4: R and C are the pull-up resistance and load capacitance of the SCL and SDA lines.

## MB91490 Series

b. Slave Mode
$\left(\mathrm{V} \mathrm{cc}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AVSS} 10=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Pin name | Condition | Standard Mode |  | Fast Mode*3 |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Max | Min | Max |  |  |
| SCL clock frequency | fscl | SDAn, SCLn | $\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF} \mathrm{~F}^{* 4} \end{aligned}$ | 0 | 100 | 0 | 400 | kHz |  |
| "L" width of the SCL clock | tıow |  |  | 4.7 | - | 1.3 | - | $\mu \mathrm{s}$ |  |
| " H " width of the SCL clock | tнІІн |  |  | 4.0 | - | 0.6 | - | $\mu \mathrm{s}$ |  |
| Bus free time between STOP and START conditions | tbus |  |  | 4.7 | - | 1.3 | - | $\mu \mathrm{s}$ |  |
| $\begin{aligned} & \mathrm{SCL} \downarrow \rightarrow \text { SDA } \\ & \text { output delay time } \end{aligned}$ | toldat |  |  | - | $5 \times \operatorname{tcycp}^{* 1}$ | - | $5 \times$ tcycp ${ }^{* 1}$ | ns |  |
| Setup time for a repeated START condition SCL $\uparrow \rightarrow$ SDA $\downarrow$ | tsusta |  |  | 4.7 | - | 0.6 | - | $\mu \mathrm{s}$ |  |
| Hold time for a repeated START condition SDA $\downarrow \rightarrow$ SCL $\downarrow$ | thdsta |  |  | 4.0 | - | 0.6 | - | $\mu \mathrm{s}$ | The first clock pulse is generated after this. |
| Setup time for STOP condition SCL $\uparrow \rightarrow$ SDA $\uparrow$ | tsusto |  |  | 4.0 | - | 0.6 | - | $\mu \mathrm{s}$ |  |
| SDA Data input hold time (vs. SCL $\downarrow$ ) | thddat |  |  | $2 \times \operatorname{tcycp}^{* 1}$ | - | $2 \times$ tcycp * ${ }^{\text {¢ }}$ | - | $\mu \mathrm{s}$ |  |
| SDA Data input setup time (vs. SCL $\uparrow$ ) | tsudat |  |  | 250 | - | 100 *2 | - | ns |  |

*1: tcycp indicates the peripheral clock cycle time.
*2 : A Fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus device can be used in a Standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement tsudat $\geq 250$ ns must then be met.
If a device does not extend the "L" period of the SCL signal, it is necessary to output the next piece of data to the SDA line 1250 ns (SDA and SCL rising Max time + tsudat) before the SCL line is released.
*3: For use at over 100 kHz , set the peripheral clock to at least 6 MHz .
*4: R and C are pull-up resistance and load capacitance of the SCL and SDA lines.

## MB91490 Series

## 6. Electrical Characteristics for the A/D Converter

(1) 8/10-bit A/D Converter
$\left(\mathrm{Vcc}=4.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{AVRH} 2=4.0 \mathrm{~V}$ to 5.5 V , $\mathrm{Vss}=\mathrm{AVSS} 10=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )

| Parameter | Sym-bol | Pin Name | Value |  |  | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max |  |  |
| Resolution | - | - | - | - | 10 | bit |  |
| Total error | - | - | -4 | - | + 4 | LSB | $\begin{aligned} & \text { When AVRH2 = } \\ & 5.0 \mathrm{~V} \end{aligned}$ |
| Linearity error | - | - | -3.5 | - | + 3.5 | LSB |  |
| Differential linearity error | - | - | -3 | - | + 3 | LSB |  |
| Zero transition voltage | Vот | AN1-0 to AN1-3 AN2-0 to AN2-7 | AVSS10-3.5 | AVSS10+0.5 | AVSS10+4.5 | LSB |  |
| Full-scale transition voltage | Vfst | AN1-0 to AN1-3 AN2-0 to AN2-7 | AVRH2-5.5 | AVRH2-1.5 | AVRH2+2.5 | LSB |  |
| Conversion time ${ }^{* 1}$ | - | - | 1.2 | - | - | $\mu \mathrm{s}$ |  |
| Analog port input current | Iain | AN1-0 to AN1-3 AN2-0 to AN2-7 | - | - | 10 | $\mu \mathrm{A}$ |  |
| Analog input voltage | Vain | AN1-0 to AN1-3 AN2-0 to AN2-7 | AVSS10 | - | AVRH2 | V |  |
| Reference voltage | - | AVRH2 | AVSS10 | - | AVCC10 | V |  |
| Power supply current <br> (Analog + digital) | IA | AVCC10 | - | 2 | 5 | mA | For each 1 unit |
|  | $1 \mathrm{IAH}^{* 2}$ | AVCC10 | - | - | 5 | $\mu \mathrm{A}$ |  |
| Reference voltage supply current (between AVRH2 and AVSS) | IR | AVRH2 | - | 1 | 2.5 | mA | For each 1 unit, at $\mathrm{AVRH} 2=5.0 \mathrm{~V}$ AVSS10 $=0 \mathrm{~V}$ |
|  | $\mathrm{IRH}^{* 2}$ | AVRH2 | - | - | 5 | $\mu \mathrm{A}$ | For each 1 unit, at stop mode |
| Analog input capacitance | - | - | - | - | 12.5 | pF |  |
| Interchannel disparity | - | AN1-0 to AN1-3 AN2-0 to AN2-7 | - | - | 4 | LSB |  |

*1: When $\mathrm{Vcc}=\mathrm{AVCC} 10=5.0 \mathrm{~V}$ and peripheral clock $=33 \mathrm{MHz}$
*2 : The current when the CPU is in stop mode and the A/D converter is not operating (at $\mathrm{Vcc}=\mathrm{AVCC10}=$ AVRH2 $=5.0 \mathrm{~V}$ ).
Notes: - The above figures do not guarantee the accuracy between each unit.

- Output impedance of the external circuit $\leq 2 \mathrm{k} \Omega$.
- The result of $8 / 10$ bit $\mathrm{A} / \mathrm{D}$ conversion is not guaranteed at the voltage of $\mathrm{V} c \mathrm{c}=2.7 \mathrm{~V}$ to 4.0 V .


## MB91490 Series

## - External impedance and sampling time of analog inputs

- The A/D converter is fitted with a sample and hold circuit. If the external impedance is so high that there is not sufficient time for sampling, the internal sample and hold capacitor will not fully charge to the analog voltage, and the precision of the A/D conversion will be adversely affected. Therefore, in order to satisfy the A/D conversion precision specifications, either adjust the register values and operating frequency or reduce the external impedance so that the sampling time is greater than the minimum value as given by the relationship between external impedance and minimum sampling time. If you are still unable to hold enough sampling time, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.
- Analog input circuit schematic


Note : The values are reference values.

- The relationship between the external impedance and minimum sampling time

- About errors
- The relative error increases as the value of |AVRH2 - AVSS| decreases.


## MB91490 Series

## - Definition of 8/10-bit A/D Converter Terms

- Resolution : Analog variation that is recognized by the A/D converter.
- Linearity error
: Deviation between the line connecting zero transition point
( $0000000000 \longleftrightarrow \rightarrow 0000000001$ ) and full-scale transition point
(1111111110 $\leftarrow \rightarrow 111111111$ ) and actual conversion characteristics.
- Differential linear error: Deviation from the ideal value of input voltage necessary to change the output code by ILSB.
- Total Error
: This error is the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error.

(Continued)


## MB91490 Series

(Continued)

$1 \mathrm{LSB}{ }^{\prime}($ ideal value $)=\frac{\mathrm{AVRH} 2-\mathrm{AVSS}}{1024}[\mathrm{~V}]$
Total error of digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}\}}{1 \mathrm{LSB}^{\prime}}$
N : A/D converter digital output value
$\mathrm{V}_{\text {мt }}$ : Voltage at which digital output changes from $(\mathrm{N}+1)$ н to N н.
Vot' (ideal value) $=$ AVSS +0.5 LSB [ V ]
$\mathrm{V}_{\text {FST }}$ (ideal value) $=\mathrm{AVRH} 2-1.5 \mathrm{LSB}$ ' [V]

## MB91490 Series

## 7. Low Voltage Detection Interrupt / Reset Electrical Characteristics

## a. Low Voltage Detection Interrupt

| Parameter |  |  |  |  |  | $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Symbol | Pin name | Value |  |  | Unit | Remarks |
|  |  |  | Min | Typ | Max |  |  |
| Detect voltage | VDL | VCC | 3.40 | 3.70 | 4.00 | V | When voltage drops |
| Release voltage | VDH | VCC | 3.45 | 3.75 | 4.05 | V | When voltage rises |
| Power supply voltage changing rate | $\|d V / d t\|$ | VCC | - | - | 0.004 | V/us | Value which detect voltage (VDL) and release voltage (VDH) are guaranteed within each spec. |

## b. Low Voltage Detection Reset

| $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | Symbol | Pin name | Value |  |  | Unit | Remarks |
|  |  |  | Min | Typ | Max |  |  |
| Detect voltage | VDL | VCC | 2.76 | 3.00 | 3.24 | V | When voltage drops |
| Release voltage | VDH | VCC | 2.81 | 3.05 | 3.29 | V | When voltage rises |
| Power supply voltage changing rate | \| dV/dt | | VCC | - | - | 0.004 | $\mathrm{V} / \mathrm{\mu s}$ | Value which detect voltage (VDL) and release voltage (VDH) are guaranteed within each spec. |



## MB91490 Series

■ ORDERING INFORMATION

| Part No. | Package |
| :--- | :---: |
| MB91F492PMC-GE1 | 64-pin plastic LQFP <br> (FPT-64P-M23) |
| MB91F492PMC1-GE1 | 64-pin plastic LQFP <br> (FPT-64P-M24) |

## MB91490 Series

## PACKAGE DIMENSIONS

| 64-pin plastic LQFP | Lead pitch | 0.65 mm |
| :---: | :---: | :---: |
| Package width $\times$ <br> package length | $12.0 \times 12.0 \mathrm{~mm}$ |  |
|  | Lead shape | Gullwing |
| Sealing method | Plastic mold |  |



Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

## MB91490 Series

(Continued)

| 64-pin plastic LQFP | Lead pitch | 0.50 mm |
| :---: | :---: | :---: |
|  | Pa ckage width $\times$ <br> package length | $10.0 \times 10.0 \mathrm{~mm}$ |
|  | Lead shape | Cullwing |
| Clastic mold |  |  |



Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/

## MB91490 Series



## FUJITSU MICROELECTRONICS LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,<br>Kohoku-ku Yokohama Kanagawa 222-0033, Japan<br>Tel: +81-45-415-5858<br>http://jp.fujitsu.com/fml/en/

For further information please contact:

## North and South America

FUJITSU MICROELECTRONICS AMERICA, INC.
1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

## Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/microelectronics/

## Korea

FUJITSU MICROELECTRONICS KOREA LTD.
206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fmk/

Asia Pacific<br>FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, \#05-08 New Tech Park 556741 Singapore<br>Tel : +65-6281-0770 Fax : +65-6281-0220<br>http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E), Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.<br>10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong<br>Tel : +852-2377-0226 Fax : +852-2376-3269<br>http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

## All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.


[^0]:    *1 : INITX = "L": Indicates the pin status with INITX remaining at the "L" level.
    *2 : INITX = "H" : Indicates the pin status existing immediately after INITX transition from "L" to "H" level.

