
74VHC4051•74VHC4052•74VHC4053

Truth Tables

Input				"ON" Channel
INH	C	B	A	
H	X	X	X	None
L	L	L	L	YO
L	L	L	H	Y1
L	L	H	L	Y2
L	L	H	H	Y3
L	H	L	L	Y4
L	H	L	H	Y5
L	H	H	L	Y6
L	H	H	H	Y7

4052				
Inputs			"ON" Channels	
INH	B	A	X	Y
H	X	X	None	None
L	L	L	$0 X$	$0 Y$
L	L	H	$1 X$	$1 Y$
L	H	L	$2 X$	$2 Y$
L	H	H	$3 X$	$3 Y$

Input											"ON" Channels		
INH	C	B	A	C	B	A							
H	X	X	X	None	None	None							
L	L	L	L	CX	BX	AX							
L	L	L	H	CX	BX	AY							
L	L	H	L	CX	BY	AX							
L	L	H	H	CX	BY	AY							
L	H	L	L	CY	BX	AX							
L	H	L	H	CY	BX	AY							
L	H	H	L	CY	BY	AX							
L	H	H	H	CY	BY	AY							

Absolute Maximum Ratings(Note 1)	
(Note 2)	
Supply Voltage (V_{CC})	-0.5 to +7.5 V
Supply Voltage (V_{EE})	+0.5 to -7.5 V
Control Input Voltage ($\mathrm{V}_{\text {IN }}$)	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
Switch I/O Voltage ($\mathrm{V}_{1 \mathrm{O}}$)	$\mathrm{V}_{\mathrm{EE}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current ($\left.\mathrm{I}_{\mathrm{IK}}, \mathrm{I}_{\mathrm{OK}}\right)$	$\pm 20 \mathrm{~mA}$
Output Current, per pin (lout)	$\pm 25 \mathrm{~mA}$
V_{CC} or GND Current, per pin (1 ${ }_{\text {cC }}$)	$\pm 50 \mathrm{~mA}$
Storage Temperature Range	
($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (P_{D})	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T_{L})	
(Soldering 10 seconds)	$260^{\circ} \mathrm{C}$

Recommended Operating

 Conditions| | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2 | 6 | V |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{EE}}\right)$ | 0 | -6 | V |
| DC Input or Output Voltage | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}\right)$ | | | |
| Operating Temperature Range | | | |
| $\quad\left(\mathrm{T}_{\mathrm{A}}\right)$ | | | |

DC Electrical Characteristics（Note 4）

Symbol	Parameter		Conditions	V_{EE}	V_{CC}		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Units					
			Typ			Guar	nteed Limits							
V_{IH}	Minimum HIGH Level Input Voltage					2.0 V		1.5	1.5	V				
					4.5 V		3.15	3.15	V					
					6.0 V		4.2	4.2	V					
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage				2.0 V		0.5	0.5	V					
					4.5 V		1.35	1.35	V					
					6.0 V		1.8	1.8	V					
R_{ON}	Maximum＂ON＂Resistance （Note 5）		$\mathrm{V}_{\text {INH }}=\mathrm{V}_{\text {IL }}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA}$		4.5 V	40	160	200						
			$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ to V_{EE}	－4．5V	4.5 V	30	120	150	Ω					
			（Figure 1）	－6．0V	6.0 V	20	100	125	Ω					
			$\begin{aligned} & \mathrm{V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{S}}=2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \text { (Figure 1) } \end{aligned}$	GND	2.0 V	100	230	280	Ω					
			GND	4.5 V	40	110	140	Ω						
			－4．5V	4.5 V	20	90	120	Ω						
			－6．0V	6.0 V	15	80	100	Ω						
R_{ON}	Maximum＂ON＂Resistance Matching			$\mathrm{V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}}$	GND	4.5 V	10	20	25	Ω				
			$\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ to GND	－4．5V	4.5 V	5	10	15	Ω					
				－6．0V	6.0 V	5	10	12	Ω					
$\overline{I_{N}}$	Maximum Control Input Current			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{CC}}=2-6 \mathrm{~V} \end{aligned}$				$\pm .05$	± 0.5	$\mu \mathrm{A}$				
$\overline{\mathrm{I}} \mathrm{CC}$	Maximum Quiescent Supply Current			$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{GND} \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\begin{aligned} & 40 \\ & 80 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$				
$\overline{I_{I Z}}$	Maximum Switch＂OFF＂ Leakage Current （Switch Input）		$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}} \text { (Figure 2) } \end{aligned}$	$\begin{aligned} & \text { GND } \\ & -6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 60 \\ \pm 100 \end{gathered}$	$\begin{aligned} & \pm 300 \\ & \pm 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$					
$I{ }_{I Z}$	Maximum Switch＂ON＂ Leakage Current	VHC4051	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { (Figure 3) } \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 0.1 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$					
		VHC4052	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { (Figure 3) } \end{aligned}$	$\begin{gathered} \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 0.050 \\ \pm 0.1 \end{gathered}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$					
		VHC4053	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { (Figure 3) } \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 0.05 \\ \pm 0.5 \end{gathered}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$					
$\overline{I_{Z}}$	Maximum Switch ＂OFF＂Leakage Current（Common Pin）	VHC4051	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$\begin{gathered} \hline \text { GND } \\ -6.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 0.1 \\ & \pm 0.2 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 2.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$					
		VHC4052	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & -6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \pm 0.05 \\ \pm 0.1 \end{gathered}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1.0 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$					
		VHC4053	$\begin{aligned} & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	$\begin{aligned} & \text { GND } \\ & -6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 6.0 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$					
Note 4：For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case on resistances（ R_{ON} ）occurs for VHC at 4.5 V ．Thus the 4.5 V values should be used when designing with this supply．Worst case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively．（The V_{IH} value at 5.5 V is 3.85 V ．）The worst case leakage current occur for CMOS at the higher voltage and so the 5.5 V values should be used． Note 5：At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2 V the analog switch on resistance becomes extremely non－linear．Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages． Note 6：Adjust 0 dB for $\mathrm{f}=1 \mathrm{kHz}$（Null R1／R R_{ON} Attenuation）．														

AC Test Circuits and Switching Time Waveforms

FIGURE 1. "ON" Resistance

FIGURE 2. "OFF" Channel Leakage Current

FIGURE 4. $\mathrm{t}_{\mathrm{PHL}}$, $\mathrm{t}_{\mathrm{PLH}}$ Propagation Delay Time Signal Input to Signal Output

FIGURE 5. $\mathrm{t}_{\mathrm{PLL}}, \mathrm{t}_{\mathrm{PLZ}}$ Propagation Delay Time Control to Signal Output

FIGURE 6. $\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$ Propagation Delay TIme Control to Signal Output

Vos

FIGURE 7. Crosstalk: Control Input to Signal Output

AC Test Circuits and Switching Time Waveforms (Continued)

Typical Performance Characteristics

$V_{C C}=-V_{E E}$

Special Considerations

In certain applications the external load-resistor current may include both V_{CC} and signal line components. To avoid drawing V_{CC} current when switch current flows into the analog switch pins, the voltage drop across the switch must not exceed 1.2 V (calculated from the ON resistance).

