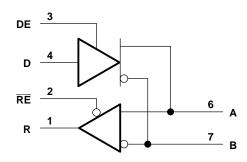

www.ti.com

HIGH-SPEED DIFFERENTIAL LINE TRANSCEIVER


FEATURES

- Low-Voltage Differential Driver and Receiver for Half-Duplex Operation
- Designed for Signaling Rates of 400 Mbit/s
- ESD Protection Exceeds 15 kV on Bus Pins
- Operates From a Single 3.3-V Supply
- Low-Voltage Differential Signaling With Typical Output Voltages of 350 mV and a 50- Ω Load
- Valid Output With as Little as 50 mV Input Voltage Difference
- Propagation Delay Times
 - Driver: 1.7 ns TypReceiver: 3.7 ns Typ
- Power Dissipation at 200 MHz
 - Driver: 50 mW TypicalReceiver: 60 mW Typical
- LVTTL Levels Are 5-V Tolerant
- Bus Pins Are High Impedance When Disabled or With V_{CC} Less Than 1.5 V
- Open-Circuit Fail-Safe Receiver
- Surface-Mount Packaging
 - D Package (SOIC)
 - DGK Package (MSOP)

SN65LVDM176D (Marked as DM176 or LVM176) SN65LVDM176DGK (Marked as M76)

logic diagram (positive logic)

DESCRIPTION

The SN65LVDM176 is a differential line driver and receiver configured as a transceiver that uses low-voltage differential signaling (LVDS) to achieve signaling rates as high as 400 Mbit/s. These circuits are similar to TIA/EIA-644 standard compliant devices (SN65LVDS) counterparts except that the output current of the drivers is doubled. This modification provides a minimum differential output voltage magnitude of 247 mV into a 50- Ω load and allows double-terminated lines and half-duplex operation. The receivers detect a voltage difference of less than 50 mV with up to 1 V of ground potential difference between a transmitter and receiver.

The intended application of this device and signaling technique is for half-duplex or multiplex baseband data transmission over controlled impedance media of approximately $100-\Omega$ characteristic impedance. The transmission media may be printed-circuit board traces, backplanes, or cables. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other application specific characteristics).

The SN65LVDM176 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

	PACK	AGE
T _A	SMALL OUTLINE (D)(1)	MSOP (DGK) ⁽¹⁾
-40°C to 85°C	SN65LVDM176D	SN65LVDM176DGK

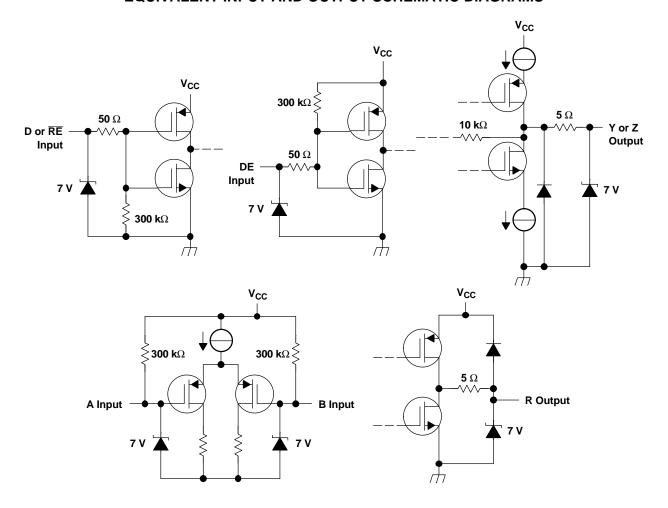
(1) The D package is available taped and reeled. Add the suffix R to the device type(e.g., SN65LVDM176DR).

FUNCTION TABLES

DRIVER⁽¹⁾

INPUT ENABLE		OUTI	PUTS
D	DE	Α	В
L	Н	L	Н
Н	Н	Н	L
Open	Н	L	Н
Х	L	Z	Z

(1) H = high level, L = low level, X = irrelevant, Z = high impedance


RECEIVER⁽¹⁾

DIFFERENTIAL INPUTS V _{ID} = V _A - V _B	ENABLE RE	OUTPUT R
V _{ID} ≥ 50 mV	L	Н
50 mV < V _{ID} < 50 mV	L	?
V _{ID} ≤ -50 mV	L	L
Open	L	Н
X	Н	Z

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

			UNIT
V_{CC}	Supply voltage ⁽²⁾		–0.5 V to 4 V
	Input voltage range	D, R, DE, RE	–0.5 V to 6 V
	Input voltage range	A or B	–0.5 V to 4 V
	Electrostatic discharge	A, B, and GND ⁽³⁾	CLass 3, A:15 kV, B:600 V
	Electrostatic discriarge	All terminals	Class 3, A:7 kV, B:500 V
	Continuous total power dissipation		See Dissipation Rating Table
T _A	Operating free-air temperature range		-40°C to 85°C
T _{stg}	Storage temperature range		−65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from	n case for 10 seconds	260°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ All voltage values, except differential I/O bus voltage, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with MIL-STD-883C Method 3015.7.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING		
D	725 mW	5.8 mW/°C	377 mW		
DGK	424 mW	3.4 mW/°C	220 mW		

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	3	3.3	3.6	V
V _{IH}	High-level input voltage	2			V
V_{IL}	Low-level input voltage			8.0	V
V _{ID}	Magnitude of differential input voltage	0.1		0.6	V
V _{IC}	Common-mode input voltage (see Figure 1)	$\frac{ V_{ID} }{2}$		$V_{\rm CC} = 0.8$	V
T _A	Operating free-air temperature	-40		85	°C

COMMON-MODE INPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE

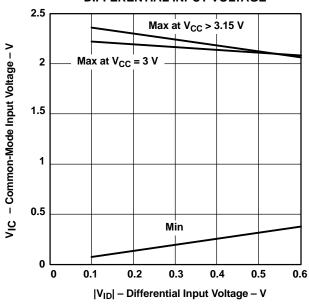


Figure 1.

DEVICE ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
		Driver and receiver enabled, no receiver load, driver $R_L = 50 \Omega$		10	15	
	I _{CC} Supply current	Driver enabled, receiver disabled, $R_L = 50 \Omega$		9	15	^
'CC		Driver disabled, receiver enabled, no load		1.8	5	mA
		Disabled		0.5	2	

(1) All typical values are at 25°C and with a 3.3-V supply.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _{OD}	Differential output voltage magnitude		D FO O Coo Figure 2	247	340	454		
$\Delta V_{OD} $	Change in differential output voltage magnitude betwee states	en logic	$R_L = 50 \Omega$, See Figure 2 and Figure 3	-50		50	mV	
V _{OC(SS)}	Steady-state common-mode output voltage			1.125		1.37 5	V	
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage logic states	between	See Figure 4	-50		50	mV	
V _{OC(PP)}	Peak-to-peak common-mode output voltage				50	150	mV	
	High-level input current ⁽¹⁾	DE	- V _{IH} = 5 V		0.5	10		
I _{IH}	nigh-level input current(*)	D	VIH = 2 V	VIH - 3 V		2	20	μΑ
	Low level input ourrept(1)	DE	V 0.9.V		-0.5	-10		
I _{IL}	Low-level input current ⁽¹⁾	D	$V_{IL} = 0.8 \text{ V}$		2	10	μΑ	
	Short-circuit output current ⁽¹⁾		V _{OA} or V _{OB} = 0 V			-10	mA	
Short-circuit output current(1)			$V_{OD} = 0 V$			-10	IIIA	
C _I	Input capacitance				3		pF	

⁽¹⁾ The non-algebraic convention, where the more positive (least negative) limit is designated maximum, is used in this data sheet for this parameter.

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP(MAX	UNIT
V _{IT+}	Positive-going differential input voltage threshold	See Figure 6		50	\/
V _{IT} _	Negative-going differential input voltage threshold		-50		mV
V _{OH}	High-level output voltage	$I_{OH} = -8 \text{ mA}$	2.4		V
V_{OL}	Low-level output voltage	$I_{OL} = 8 \text{ mA}$		0.4	V
	locut current (A or D inputa)(2)	V _I = 0 V	-2	-20	
ΙΙ	Input current (A or B inputs) ⁽²⁾	V _I = 2.4 V	-1.2		μA
I _{I(OFF)}	Power-off input current (A or B inputs)	V _{CC} = 0 V or 1.8 V		20	μΑ
I _{IH}	High-level input current (enables)	V _{IH} = 5 V		10	μΑ
I _{IL}	Low-level input current (enables)	V _{IL} = 0.8 V		10	μΑ
l _{OZ}	High-impedance output current ⁽²⁾	V _O = 0 V or 5 V		±1	μΑ

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

⁽²⁾ The non-algebraic convention, where the more positive (least negative) limit is designated maximum, is used in this data sheet for this parameter.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		0.5	1.7	2.7	20
t _{PHL}	Propagation delay time, high-to-low-level output		0.5	1.7	2.7	ns
t _{sk(p)}	Pulse skew (t _{pHL} - t _{pLH})	$R_L = 50 \Omega$, $C_L = 10 pF$, See Figure 3		0.2		ns
t _r	Differential output signal rise time	Coo riguro o		0.6	1	20
t _f	Differential output signal fall time			0.6	1	ns
t _{sk(pp)} (2)	Part-to-part skew				1	ns
t _{PZH}	Propagation delay time, high-impedance-to-high-level output			8	12	
t _{PZL}	Propagation delay time, high-impedance-to-low-level output	Coo Figure 5		7	10	
t _{PHZ}	Propagation delay time, high-level-to-high-impedance output	See Figure 5		3	10	ns
t _{PLZ}	Propagation delay time, low-level-to-high-impedance output			4	10	

⁽¹⁾ All typical values are at 25°C and with a 3.3 V supply.

RECEIVER SWITCHING CHARACTERISTICS

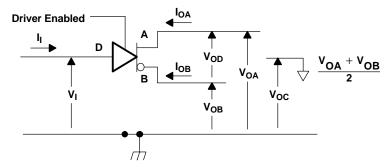
over recommended operating conditions (unless otherwise noted)

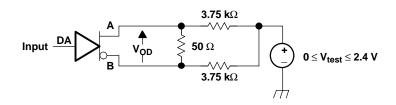
	PARAMETER	TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		2.3	3.7	4.5	
t _{PHL}	Propagation delay time, high-to-low-level output		2.3	3.7	4.5	ns
t _{sk(p)}	Pulse skew (t _{pHL} t _{pLH})	C _L = 10 pF, See Figure 7		0.4		
t _r	Output signal rise time			0.8	1.5	20
t _f	Output signal fall time			0.8	1.5	ns
t _{sk(pp)} (2)	Part-to-part skew				1	ns
t _{PZH}	Propagation delay time, high-level-to-high-impedance output			3	10	
t _{PZL}	Propagation delay time, low-level-to-low-impedance output	Soo Figure 9		3	10	20
t _{PHZ}	Propagation delay time, high-impedance-to-high-level output	See Figure 8		4	10	ns
t_{PLZ}	Propagation delay time, low-impedance-to-high-level output			6	10	

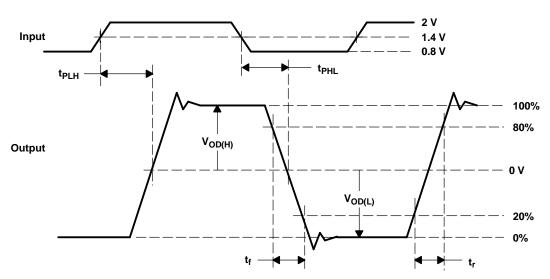
⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply.

PARAMETER MEASUREMENT INFORMATION

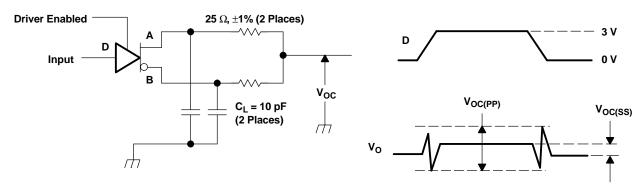
DRIVER




Figure 2. Driver Voltage and Current Definitions

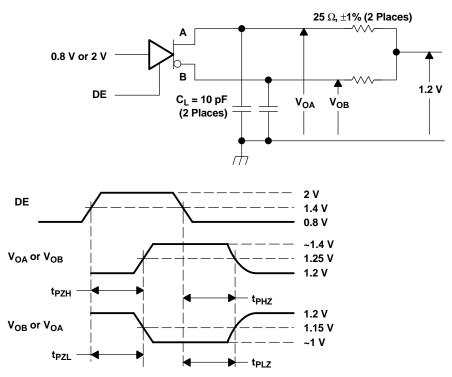

⁽²⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

 ⁽²⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.


PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

Figure 3. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal



A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. The measurement of $V_{OC(PP)}$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz.

Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

PARAMETER MEASUREMENT INFORMATION (continued)

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 \pm 10 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

Figure 5. Enable and Disable Time Circuit and Definitions

RECEIVER

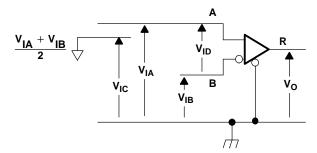
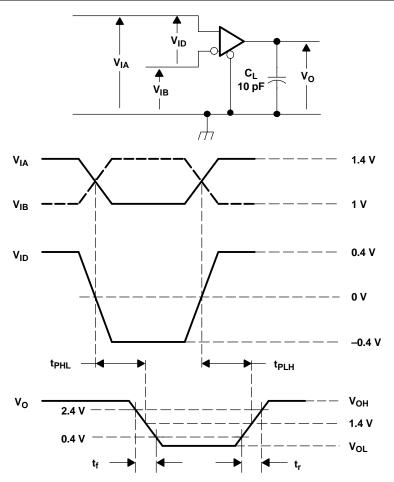
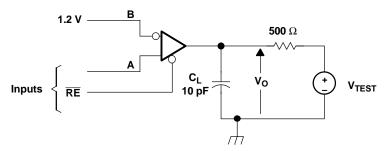



Figure 6. Receiver Voltage Definitions


	VOLTAGES (V)	RESULTING DIFFERENTIAL INPUT VOLTAGE (mV)	RESULTING COMMON- MODE INPUT VOLTAGE (V)
V _{IA}	V _{IB}	V _{ID}	V _{IC}
1.225	1.175	50	1.2
1.175	1.225	-50	1.2
2.41	2.36	50	2.385
2.36	2.41	-50	2.385
0.05	0	50	0.025
0	0.05	-50	0.025
1.5	0.9	600	1.2
0.9	1.5	-600	1.2
2.4	1.8	600	2.1
1.8	2.4	-600	2.1
0.6	0	600	0.3
0	0.6	-600	0.3

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

Figure 7. Timing Test Circuit and Waveforms

A. All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 5000 \pm 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

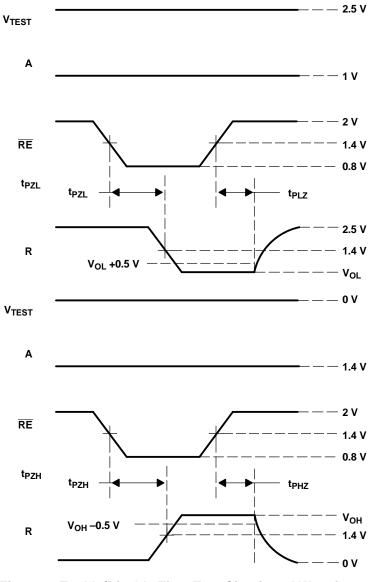
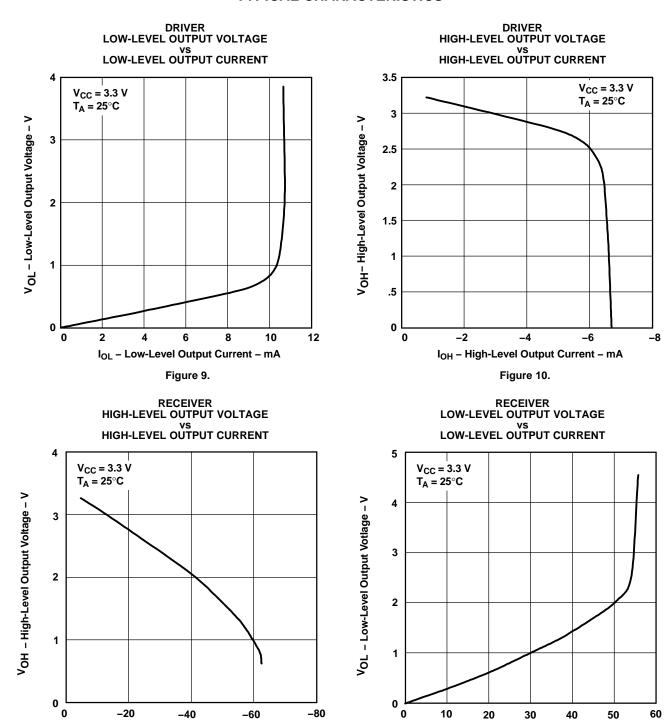



Figure 8. Enable/Disable Time Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

I_{OL} – Low-Level Output Current – mA

Figure 12.

I_{OH} – High-Level Output Current – mA

Figure 11.

TYPICAL CHARACTERISTICS (continued)

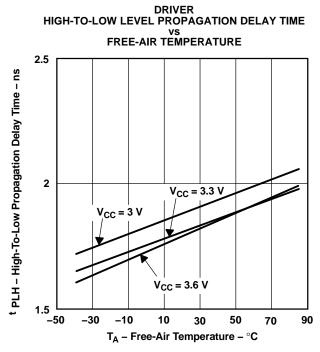
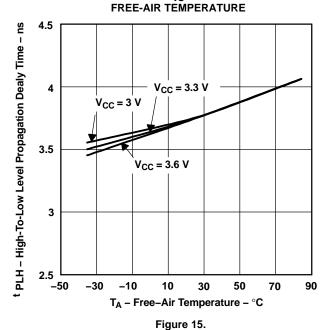



Figure 13.

RECEIVER HIGH-TO-LOW LEVEL PROPAGATION DELAY TIME vs

DRIVER
LOW-TO-HIGH LEVEL PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

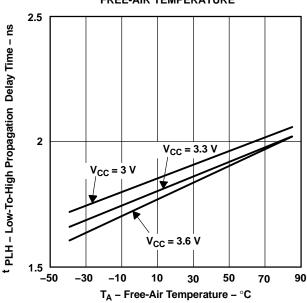


Figure 14.

RECEIVER LOW-TO-HIGH LEVEL PROPAGATION DELAY TIME vs FREE-AIR TEMPERATURE

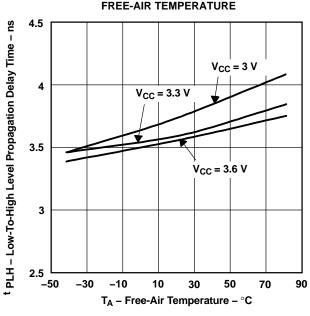


Figure 16.

APPLICATION INFORMATION

The devices are generally used as building blocks for high-speed point-to-point data transmission. Ground differences are less than 1 V with a low common-mode output and balanced interface for very low noise emissions. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers maintain ECL speeds without the power and dual supply requirements.

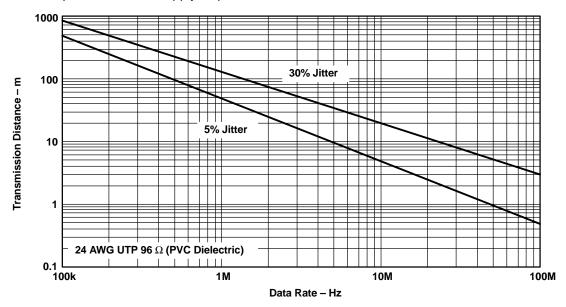


Figure 17. Data Transmission Distance Versus Rate

FAIL SAFE

One of the most common problems with differential signaling applications is how the system responds when no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in that its output logic state can be indeterminate when the differential input voltage is between –50 mV and 50 mV and within its recommended input common-mode voltage range. TI's LVDS receiver is different in how it handles the open-input circuit situation, however.

Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver will pull each line of the signal pair to near V_{CC} through 300-k Ω resistors as shown in Figure 18. The fail-safe feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the output to a high-level regardless of the differential input voltage.

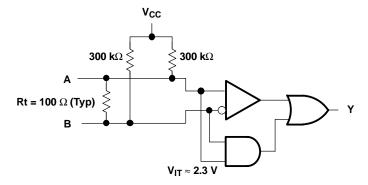
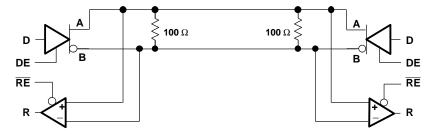
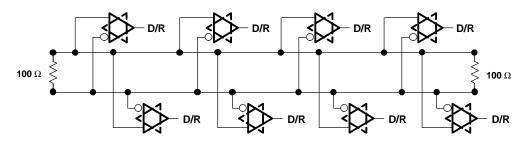



Figure 18. Open-Circuit Fail Safe of the LVDS Receiver



APPLICATION INFORMATION (continued)

It is only under these conditions that the output of the receiver will be valid with less than a 50-mV differential input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long as it is connected as shown in the figure. Other termination circuits may allow a dc current to ground that could defeat the pullup currents from the receiver and the fail-safe feature.

Bidirectional Half-Duplex Applications

Multipoint Bus Applications

Note A: Keep drivers and receivers as close to the LVDS bus side connector as possible.

Figure 19. Bidirectional Half-Duplex and Multipoint Bus Applications

www.ti.com 23-Jun-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN65LVDM176D	ACTIVE	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	DM176	Samples
SN65LVDM176DGK	ACTIVE	VSSOP	DGK	8	80	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	M76	Samples
SN65LVDM176DGKG4	ACTIVE	VSSOP	DGK	8	80	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	M76	Samples
SN65LVDM176DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	M76	Samples
SN65LVDM176DGKRG4	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	M76	Samples
SN65LVDM176DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	DM176	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

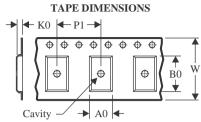
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

www.ti.com 23-Jun-2023


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

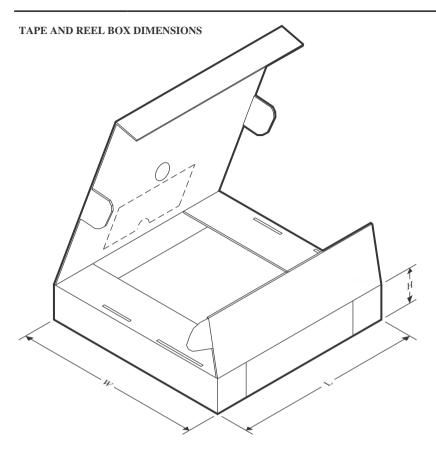
www.ti.com 30-May-2024

TAPE AND REEL INFORMATION

REEL DIMENSIONS Reel Diameter Reel Width (W1)

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

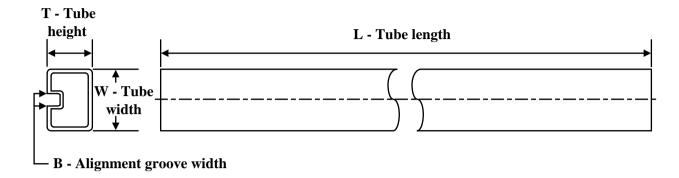
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVDM176DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
SN65LVDM176DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65LVDM176DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 30-May-2024


*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDM176DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
SN65LVDM176DR	SOIC	D	8	2500	340.5	338.1	20.6
SN65LVDM176DR	SOIC	D	8	2500	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 30-May-2024

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN65LVDM176D	D	SOIC	8	75	507	8	3940	4.32
SN65LVDM176D	D	SOIC	8	75	505.46	6.76	3810	4

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

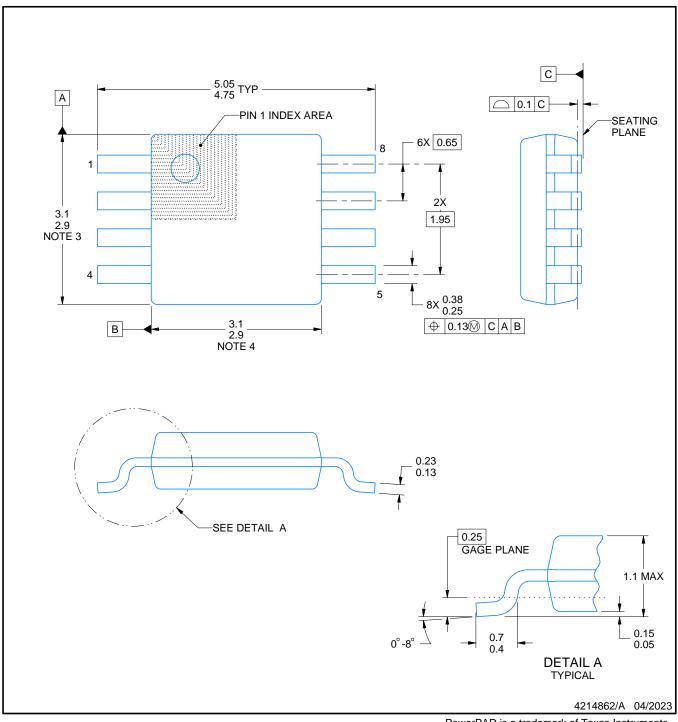
SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

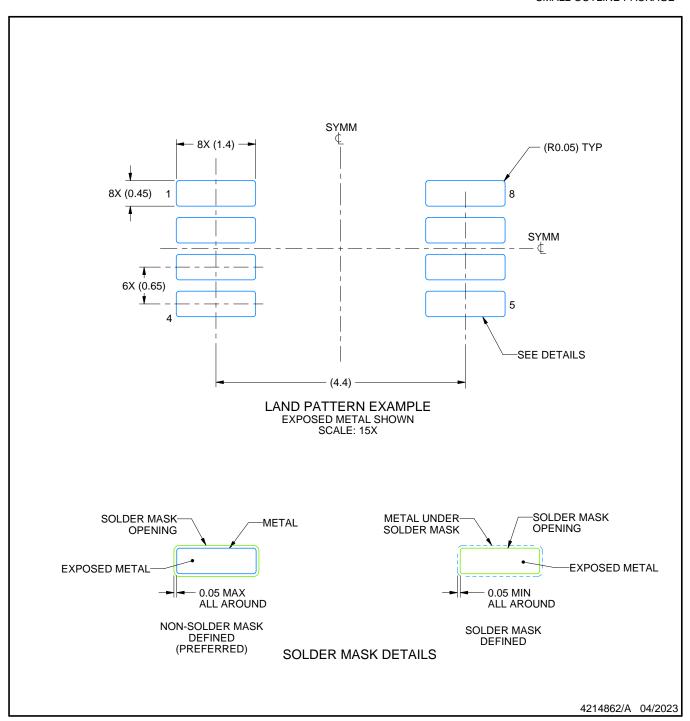

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

SMALL OUTLINE PACKAGE

NOTES:

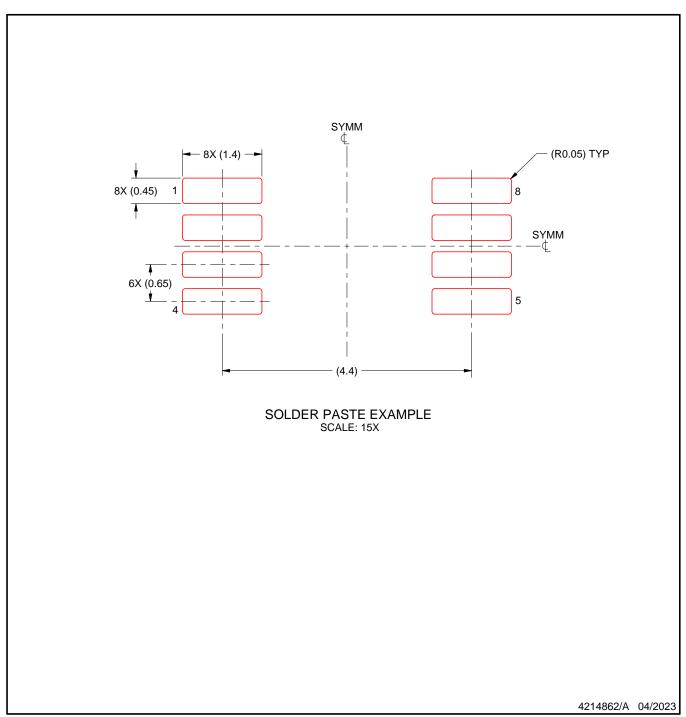
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated