

 V_{cc}

1Y

2B

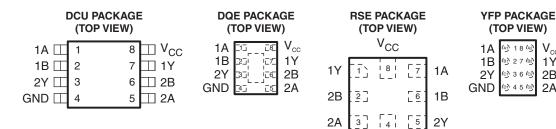
2A

www.ti.com

SCES752C - SEPTEMBER 2009-REVISED MAY 2010

LOW-POWER DUAL 2-INPUT POSITIVE-NAND GATE

Check for Samples: SN74AUP2G00


FEATURES

- Available in the Texas Instruments NanoStar™ Package
- Low Static-Power Consumption $(I_{CC} = 0.9 \ \mu A Maximum)$
- Low Dynamic-Power Consumption $(C_{pd} = 4.3 \text{ pF Typ at } 3.3 \text{ V})$
- Low Input Capacitance (C_i = 1.5 pF Typical)
- Low Noise Overshoot and Undershoot <10% of V_{CC}
- Ioff Supports Partial-Power-Down Mode • Operation
- Wide Operating V_{CC} Range of 0.8 V to 3.6 V

- **Optimized for 3.3-V Operation**
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- t_{nd} = 5.9 ns Maximum at 3.3 V
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)

GND

1000-V Charged-Device Model (C101)

See mechanical drawings for dimensions.

DESCRIPTION/ORDERING INFORMATION

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static- and dynamic-power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in increased battery life (see Figure 1). This product also maintains excellent signal integrity (see the very low undershoot and overshoot characteristics shown in Figure 2).

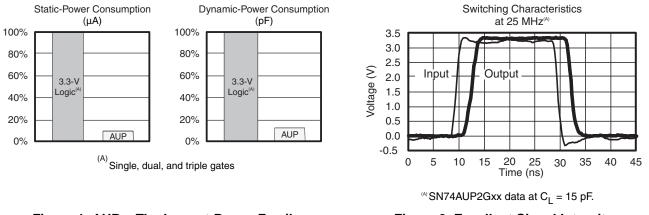


Figure 2. Excellent Signal Integrity

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

AA)

SN74AUP2G00

SCES752C - SEPTEMBER 2009-REVISED MAY 2010

www.ti.com

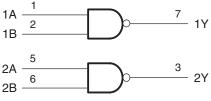
The SN74AUP2G00 performs the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

NanoStar™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

T _A	PACKAGE ^{(1) (2)}		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
	NanoStar™ – WCSP (DSBGA) 0.23-mm Large Bump – YFP (Pb-free)	Reel of 3000	SN74AUP2G00YFPR	H A _
–40°C to 85°C	uQFN – DQE	Reel of 5000	SN74AUP2G00DQER	PN
	QFN – RSE	Reel of 5000	SN74AUP2G00RSER	PN
	SSOP – DCU	Reel of 3000	SN74AUP2G00DCUR	H00_


Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. (1)

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI (2)website at www.ti.com.

DCU: The actual top-side marking has one additional character that designates the wafer fab/assembly site. (3) YFP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the wafer fab/assembly site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).

F	FUNCTION TABLE									
INP	UTS	OUTPUT								
Α	В	Y								
L	L	Н								
L	Х	Н								
Х	L	Н								
Н	Н	L								

LOGIC DIAGRAM (POSITIVE LOGIC)

Pin number shown are for DCU and DQE packages.

SCES752C - SEPTEMBER 2009-REVISED MAY 2010

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾			4.6	V
Vo	Output voltage range in the high or low stat	Output voltage range in the high or low state ⁽²⁾			
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±20	mA
	Continuous current through V_{CC} or GND			±50	mA
		DCU package		220	
0	Decline the result interaction (3)	DQE package		261	°C/W
θ_{JA}	Package thermal impedance ⁽³⁾	RSE package		253	-C/W
		YFP package		132	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating" conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) (3) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

The package thermal impedance is calculated in accordance with JESD 51-7.

SCES752C-SEPTEMBER 2009-REVISED MAY 2010

www.ti.com

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		0.8	3.6	V
		$V_{CC} = 0.8 V$	V _{CC}		
V	Lich lovel input veltage	$V_{CC} = 1.1 \text{ V to } 1.95 \text{ V}$	0.65 × V _{CC}		V
V _{IH}	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.6		v
		V_{CC} = 3 V to 3.6 V	2		
	Low-level input voltage	$V_{CC} = 0.8 V$		0	
N/		V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
V _{IL}	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	v
		V _{CC} = 3 V to 3.6 V		0.9	
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
	High-level output current	V _{CC} = 0.8 V		-20	μA
		V _{CC} = 1.1 V		-1.1	
		V _{CC} = 1.4 V		-1.7	
I _{OH}		V _{CC} = 1.65		-1.9	mA
		V _{CC} = 2.3 V		-3.1	
		$V_{CC} = 3 V$		-4	
		V _{CC} = 0.8 V		20	μA
		V _{CC} = 1.1 V		1.1	
		V _{CC} = 1.4 V		1.7	
I _{OL}	Low-level output current	V _{CC} = 1.65 V		1.9	
		V _{CC} = 2.3 V		3.1	
		$V_{CC} = 3 V$		4	
Δt/Δv	Input transition rise or fall rate	$V_{CC} = 0.8 V \text{ to } 3.6 V$		200	ns/V
T _A	Operating free-air temperature	•	-40	85	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report *Implications* of Slow or Floating CMOS Inputs, literature number SCBA004.

Copyright © 2009–2010, Texas Instruments Incorporated

SCES752C - SEPTEMBER 2009-REVISED MAY 2010

www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	V	T,	_A = 25°C		T _A = -40°C	to 85°C			
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	ΤΥΡ Ι	MAX	MIN	MAX	UNIT		
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} - 0.1			V _{CC} - 0.1				
	I _{OH} = -1.1 mA	1.1 V	$0.75 \times V_{CC}$			$0.7 \times V_{CC}$				
	I _{OH} = -1.7 mA	1.4 V	1.11			1.03				
V	I _{OH} = -1.9 mA	1.65 V	1.32			1.3		V		
V _{OH}	I _{OH} = -2.3 mA	2.2.1/	2.05			1.97		v		
	I _{OH} = -3.1 mA	2.3 V	1.9			1.85				
	I _{OH} = -2.7 mA	2.1/	2.72			2.67				
	$I_{OH} = -4 \text{ mA}$	3 V	2.6			2.55				
	I _{OL} = 20 μA	0.8 V to 3.6 V			0.1		0.1			
	I _{OL} = 1.1 mA	1.1 V		0.3 ×	V_{CC}		$0.3 \times V_{CC}$			
	I _{OL} = 1.7 mA	1.4 V			0.31		0.37	V		
N/	I _{OL} = 1.9 mA	1.65 V			0.31		0.35			
V _{OL}	I _{OL} = 2.3 mA	0.0.1/			0.31		0.33			
	I _{OL} = 3.1 mA	2.3 V			0.44		0.45			
	I _{OL} = 2.7 mA	3 V			0.31		0.33			
	$I_{OL} = 4 \text{ mA}$	3 V			0.44		0.45			
I _I A or B input	$V_I = GND$ to 3.6 V	0 V to 3.6 V			0.1		0.5	μA		
l _{off}	V_{I} or V_{O} = 0 V to 3.6 V	0 V			0.2		0.6	μA		
ΔI _{off}	V_{I} or V_{O} = 0 V to 3.6 V	0 V to 0.2 V			0.2		0.6	μΑ		
I _{CC}	$V_{I} = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_{O} = 0$	0.8 V to 3.6 V			0.5		0.9	μA		
ΔI _{CC}	$V_{I} = V_{CC} - 0.6 V^{(1)},$ $I_{O} = 0$	3.3 V			40		50	μA		
C _i	$V_{I} = V_{CC}$ or GND	0 V		1.5				pF		
U _i		3.6 V		1.5				μг		
Co	V _O = GND	0 V		3				рF		

(1) One input at $V_{CC} - 0.6 V$, other input at V_{CC} or GND

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 5 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	то	V	T,	₄ = 25°C	;	$T_A = -40^{\circ}C$	to 85°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
			0.8 V		19.8				
	A or B	Y	1.2 V ± 0.1 V	2.6	7.8	18.8	2.1	19.8	
			1.5 V ± 0.1 V	1.4	5.4	11.8	0.9	13.9	
t _{pd}			1.8 V ± 0.15 V	1	4.3	9	0.5	11.1	ns
			2.5 V ± 0.2 V	1	3	5.9	0.5	7.8	
			3.3 V ± 0.3 V	1	2.4	4.9	0.5	5.9	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	то	V	T,	₄ = 25°C	;	T _A = -40°C	to 85°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	МАХ	UNIT
			0.8 V		23.1				
	A or B	Y	1.2 V ± 0.1 V	1.5	8.9	21.1	1	22	
			1.5 V ± 0.1 V	1	6.3	13.2	0.5	15.1	
t _{pd}			1.8 V ± 0.15 V	1	5	10.1	0.5	12.2	ns
			2.5 V ± 0.2 V	1	3.6	7.4	0.5	9	
			3.3 V ± 0.3 V	1	2.9	5.2	0.5	6.5	

SWITCHING CHARACTERISTICS

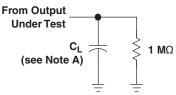
over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	то	М	T,	₄ = 25°C	;	$T_A = -40^{\circ}C$	to 85°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	
			0.8 V		24.7				
		Y	1.2 V ± 0.1 V	3.6	9.8	21.7	3.1	22.7	
	4 D		1.5 V ± 0.1 V	2.3	4.6	14	1.8	15.7	ns
t _{pd}	A or B		1.8 V ± 0.15 V	1.6	5.5	10.6	1.1	12.6	
			2.5 V ± 0.2 V	1	4	7	0.5	8.9	
			$3.3 \text{ V} \pm 0.3 \text{ V}$	1	3.3	5.6	0.5	6.9	

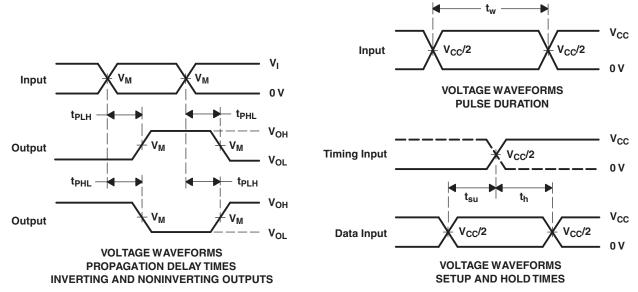
SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, C_L = 30 pF (unless otherwise noted) (see Figure 3 and Figure 4)

PARAMETER	FROM	то	V	Τ,	ג = 25°C	;	$T_A = -40^{\circ}C$	to 85°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	V _{cc}	MIN	TYP	MAX	MIN	MAX	UNIT
			0.8 V		31.8				
	A or B	Y	1.2 V ± 0.1 V	4.9	12.6	26.3	4.4	27	
			1.5 V ± 0.1 V	3.4	9	16.6	2.9	18.3	
t _{pd}			1.8 V ± 0.15 V	2.5	7.3	12.9	2	14.8	ns
			2.5 V ± 0.2 V	1.8	5.4	8.8	1.3	10.5	
			$3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	4.5	6.7	1	8.2	


OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS	V _{cc}	ТҮР	UNIT
		f = 10 MHz	0.8 V	4	
			1.2 V ± 0.1 V	4	pF
0	Power dissipation capacitance		1.5 V ± 0.1 V	4	
C _{pd}			1.8 V ± 0.15 V	4	
			2.5 V ± 0.2 V	4.1	
			3.3 V ± 0.3 V	4.3	

SCES752C-SEPTEMBER 2009-REVISED MAY 2010

PARAMETER MEASUREMENT INFORMATION (Propagation Delays, Setup and Hold Times, and Pulse Width)

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V_{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V_{CC} = 3.3 V \pm 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}

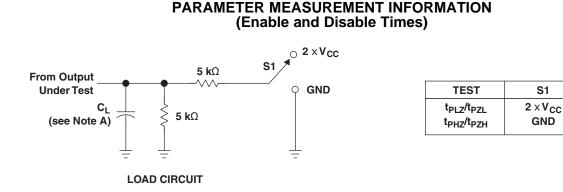
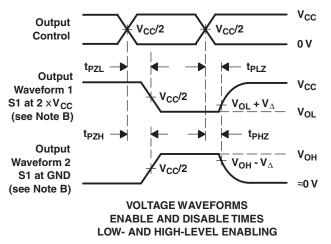

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , for propagation delays t_f/t_f = 3 ns, for setup and hold times and pulse width t_f/t_f = 1.2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLH} and t_{PHL} are the same as t_{pd}.
- F. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms


LOAD CIRCUIT

SCES752C-SEPTEMBER 2009-REVISED MAY 2010

	V _{CC} = 0.8 V	$V_{CC} = 1.2 V$ ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V_{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	$V_{CC} = 3.3 \text{ V}$ $\pm 0.3 \text{ V}$
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
VM	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
V_{Δ}	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r/t_f = 3 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- $\mathsf{E}. \quad t_{\mathsf{PLZ}} \text{ and } t_{\mathsf{PHZ}} \text{ are the same as } t_{\mathsf{dis}}.$
- $\label{eq:F.transform} F. \quad t_{\mathsf{PLH}} \text{ and } t_{\mathsf{PHL}} \text{ are the same as } t_{\mathsf{pd}}.$
- G. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

8

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(-)		-		-	(-)	(6)	(-/		()	
SN74AUP2G00DCUR	ACTIVE	VSSOP	DCU	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HOOR	Samples
SN74AUP2G00DQER	ACTIVE	X2SON	DQE	8	5000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	PN	Samples
SN74AUP2G00RSER	ACTIVE	UQFN	RSE	8	5000	RoHS & Green	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	PN	Samples
SN74AUP2G00YFPR	ACTIVE	DSBGA	YFP	8	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HAN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

10-Dec-2020

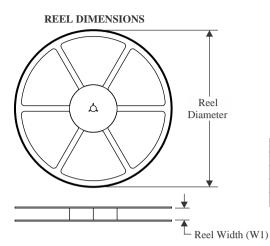
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

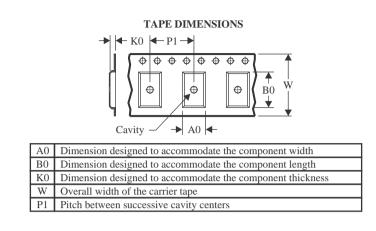
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AUP2G00 :

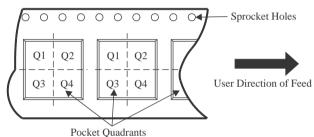
• Automotive: SN74AUP2G00-Q1

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

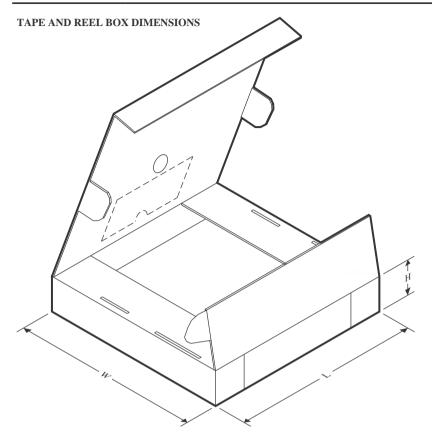


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



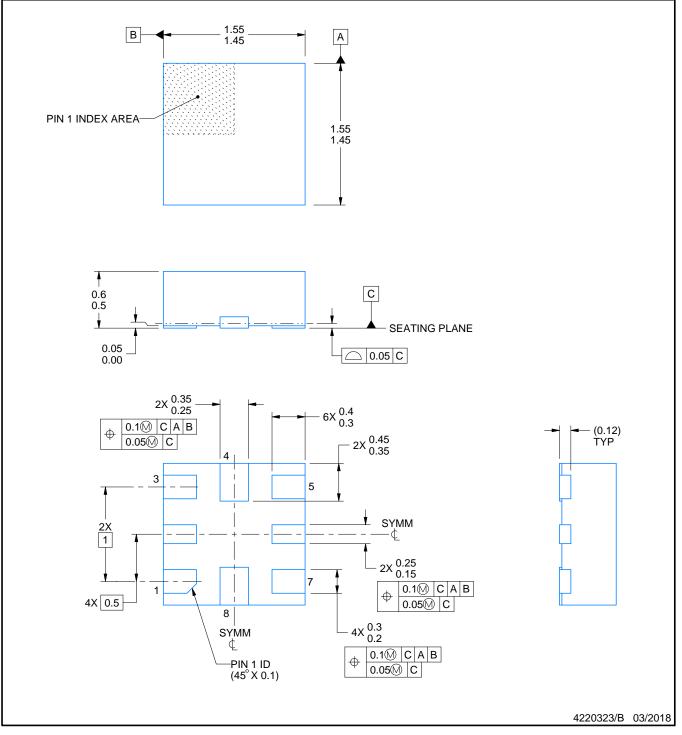
*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP2G00DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
SN74AUP2G00DQER	X2SON	DQE	8	5000	180.0	8.4	1.2	1.6	0.55	4.0	8.0	Q1
SN74AUP2G00RSER	UQFN	RSE	8	5000	180.0	8.4	1.7	1.7	0.7	4.0	8.0	Q2
SN74AUP2G00YFPR	DSBGA	YFP	8	3000	178.0	9.2	0.9	1.75	0.6	4.0	8.0	Q1

PACKAGE MATERIALS INFORMATION

15-Mar-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP2G00DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
SN74AUP2G00DQER	X2SON	DQE	8	5000	202.0	201.0	28.0
SN74AUP2G00RSER	UQFN	RSE	8	5000	202.0	201.0	28.0
SN74AUP2G00YFPR	DSBGA	YFP	8	3000	220.0	220.0	35.0


RSE0008A

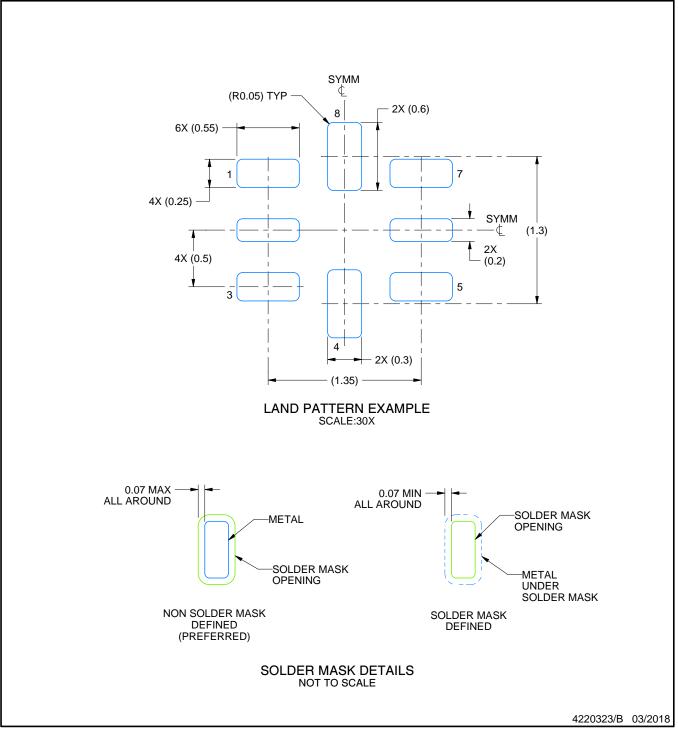
PACKAGE OUTLINE

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



RSE0008A

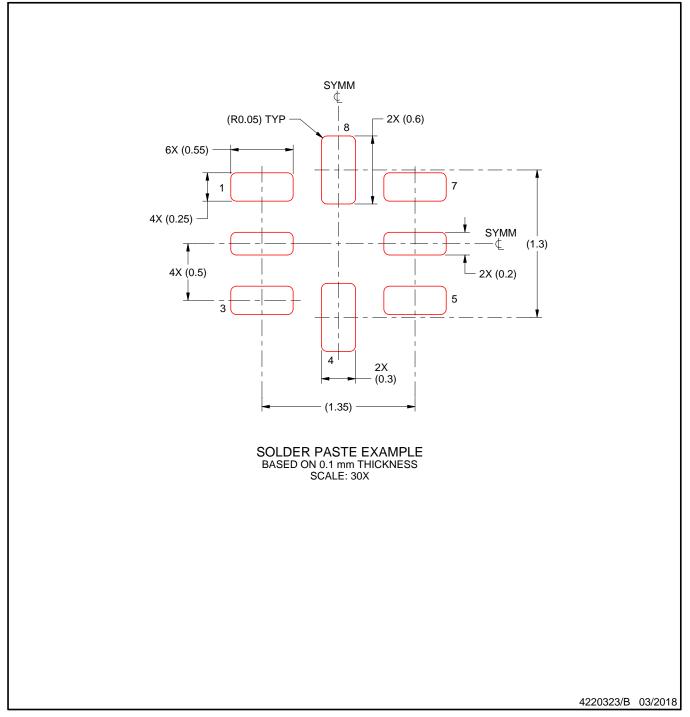
EXAMPLE BOARD LAYOUT

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



RSE0008A

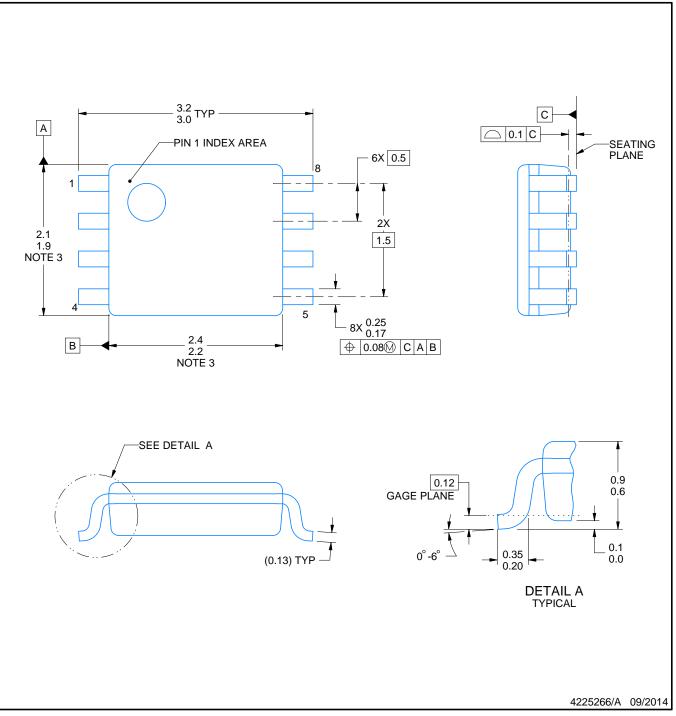
EXAMPLE STENCIL DESIGN

UQFN - 0.6 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DCU0008A

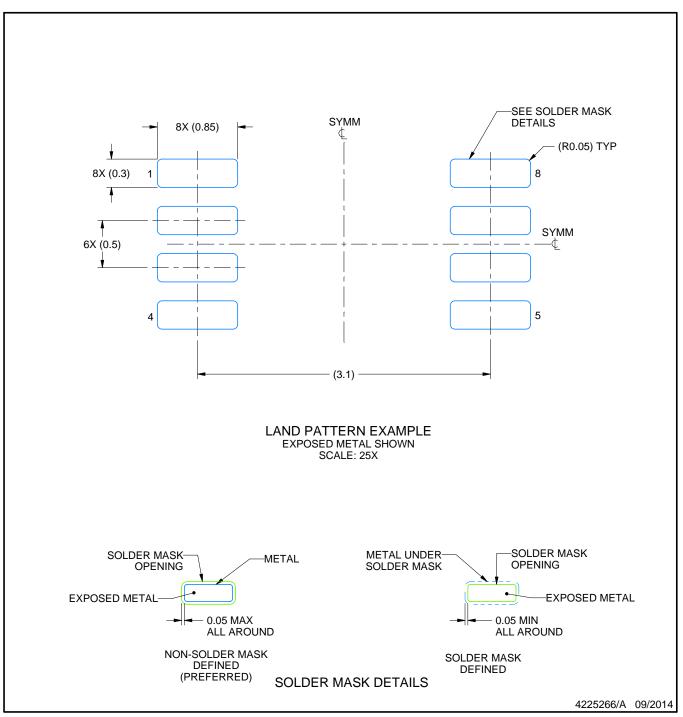
PACKAGE OUTLINE

VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-187 variation CA.



DCU0008A

EXAMPLE BOARD LAYOUT

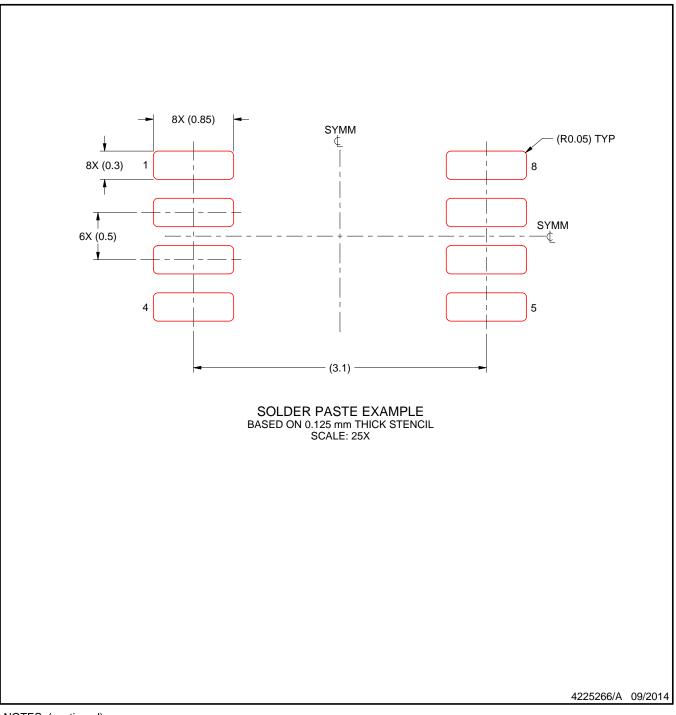
VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DCU0008A

EXAMPLE STENCIL DESIGN

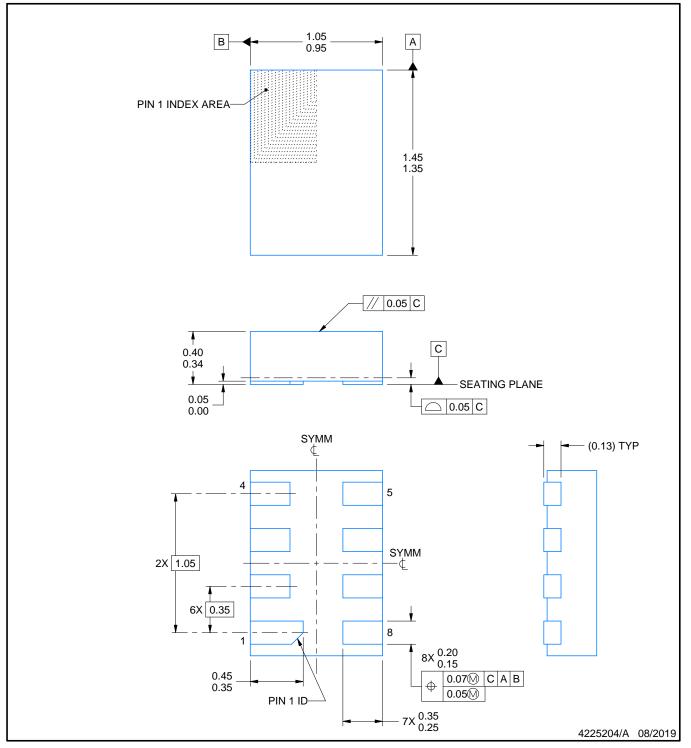
VSSOP - 0.9 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

8. Board assembly site may have different recommendations for stencil design.

^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


DQE0008A

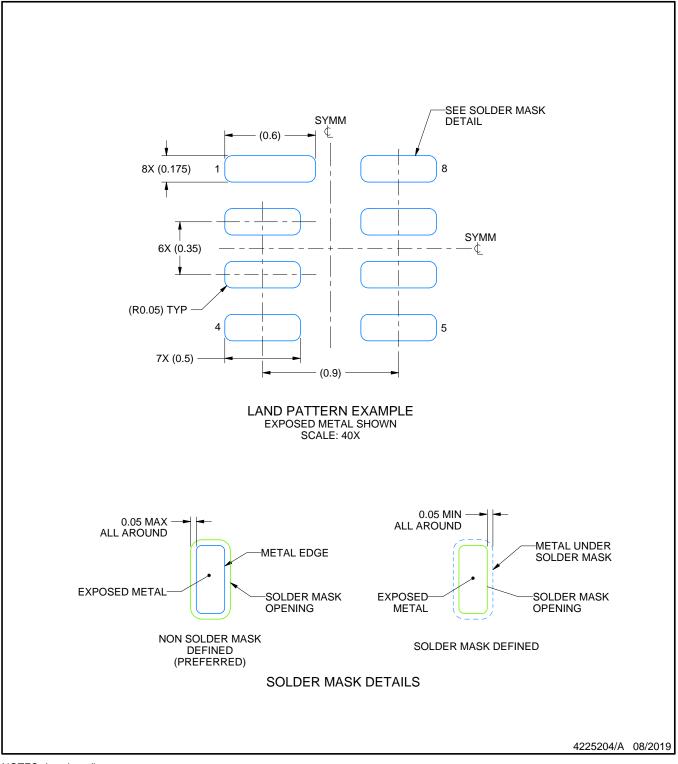
PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This package complies to JEDEC MO-287 variation X2EAF.



DQE0008A

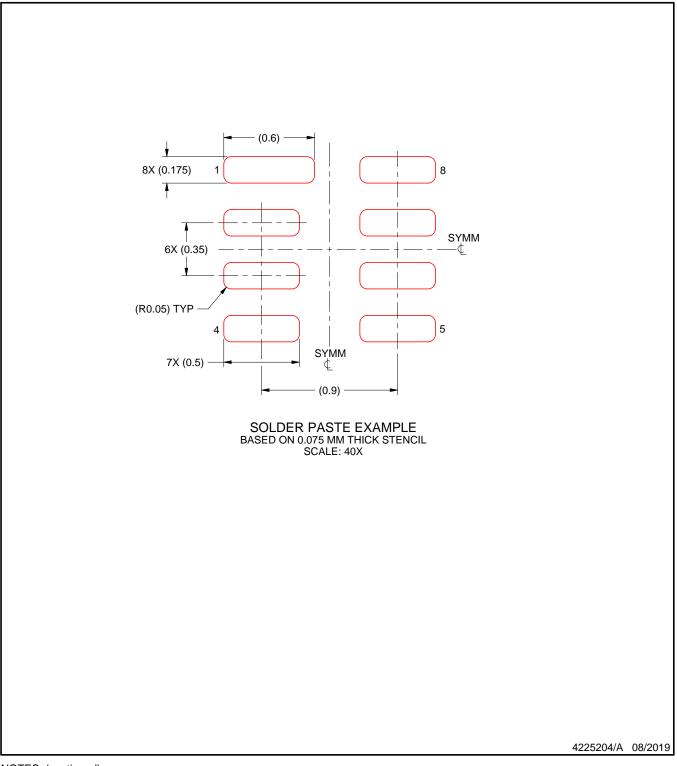
EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).



DQE0008A

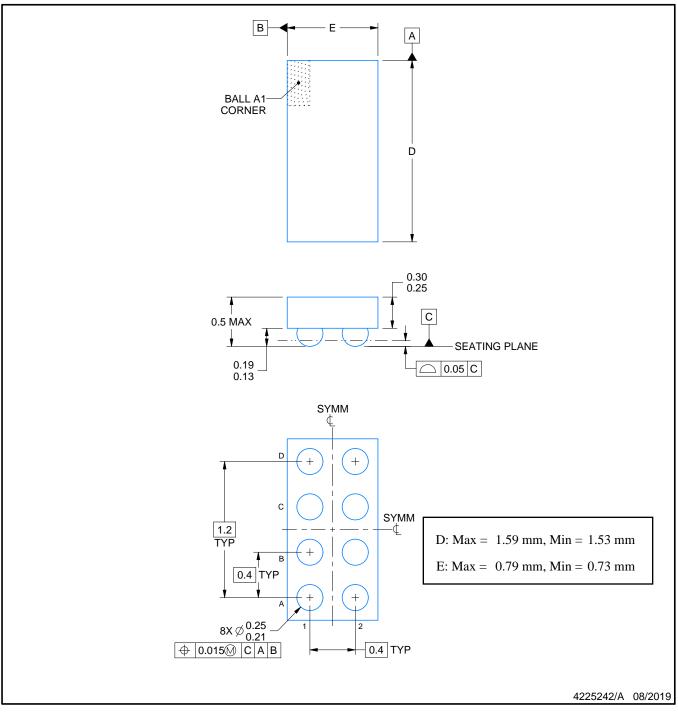
EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.


YFP0008

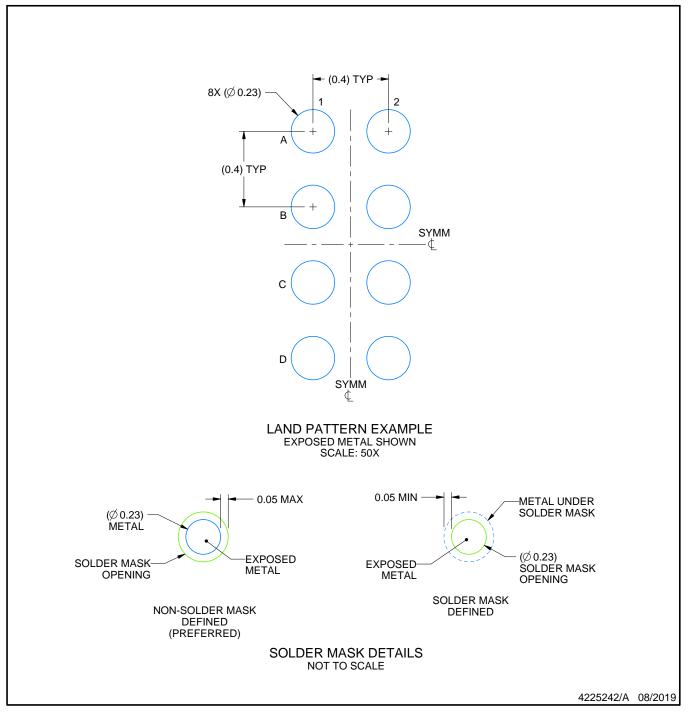
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



YFP0008

EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

 Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).

YFP0008

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated