Technical documentation

3 Design \& development

SNx4HC368 Hex Inverting Buffers and Line Drivers With 3-State Outputs

1 Features

- Wide operating voltage range of 2 V to 6 V
- High-Current 3-State outputs drive bus lines, buffer memory address registers, or drive up to 15 LSTTL loads
- Inverting outputs
- Low power consumption, 80- $\mu \mathrm{A}$ max I_{CC}
- Typical $\mathrm{t}_{\mathrm{pd}}=10 \mathrm{~ns}$
- $\pm 6-\mathrm{mA}$ output drive at 5 V
- Low input current of $1 \mu \mathrm{~A}$ max

2 Description

These hex inverting buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The 'HC368 devices are organized as dual 4-line and 2-line buffers/drivers with active-low output-enable (1 $\overline{\mathrm{OE}}$ and $2 \overline{\mathrm{OE}}$) inputs. When $\overline{\mathrm{OE}}$ is low, the device passes inverted data from the A inputs to the Y outputs. When $\overline{\mathrm{OE}}$ is high, the outputs are in the highimpedance state.

Device Information

PART NUMBER	PACKAGE $^{(1)}$	BODY SIZE (NOM)
SN54HC368J	CDIP (16)	$24.38 \mathrm{~mm} \times 6.92 \mathrm{~mm}$
SN74HC368D	SOIC (16)	$9.90 \mathrm{~mm} \times 3.90 \mathrm{~mm}$
SN74HC368N	PDIP (16)	$19.31 \mathrm{~mm} \times 6.35 \mathrm{~mm}$
SN74HC368NS	SO (16)	$6.20 \mathrm{~mm} \times 5.30 \mathrm{~mm}$
SN74HC368PW	TSSOP (16)	$5.00 \mathrm{~mm} \times 4.40 \mathrm{~mm}$
SN54HC368FK	LCCC (20)	$8.89 \mathrm{~mm} \times 8.45 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

To Three Other Channels

Functional Block Diagram

Table of Contents

1 Features 1
7.2 Functional Block Diagram 9
2 Description 1
3 Revision History 2
4 Pin Configuration and Functions 3
5 Specifications 4
5.1 Absolute Maximum Ratings. 4
5.2 Recommended Operating Conditions ${ }^{(1)}$ 4
5.3 Thermal Information. 4
5.4 Electrical Characteristics 6
5.5 Switching Characteristics 6
5.6 Operating Characteristics 7
6 Parameter Measurement Information 8
7 Detailed Description. 9
7.1 Overview 9
7.3 Device Functional Modes 9
8 Power Supply Recommendations 10
9 Layout. 10
9.1 Layout Guidelines 10
10 Device and Documentation Support 11
10.1 Documentation Support. 11
10.2 Receiving Notification of Documentation Updates. 11
10.3 Support Resources 11
10.4 Trademarks 11
10.5 Electrostatic Discharge Caution 11
10.6 Glossary 11
11 Mechanical, Packaging, and Orderable
Information 11

3 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision E (February 2022) to Revision F (June 2022)
Page

- Junction-to-ambient thermal resistance values increased. D was 73 is now $117.2, \mathrm{~N}$ was 67 is now 68.6 , NS was 64 is now 87.4 , PW was 108 is now 137.5
- Updated the numbering, formatting, tables, figures, and cross-references throughout the doucment to reflect modern data sheet standards

4 Pin Configuration and Functions

```
            10E [1 U 16] VCC
            1A1[2 15]2\overline{OE}
            1Y1[3 14 2A2
            1A2[4 13-2Y2
            1Y2 5 12-2A1
            1A3 6 111 2Y1
            1Y3 [7 10)1A4
            GND [8 % 1Y4
            J, D, N, NS, PW package
16-Pin CDIP, SOIC, PDIP, SO, TSSOP
                Top View
```


NC - No internal connection
FK package
20-Pin LCCC Top View

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		MIN	MAX	UNIT
V_{CC}	Supply voltage range	-0.5	7	V
I_{IK}	Input clamp current $^{(2)}$	$\left(\mathrm{V}_{1}<0\right.$ or $\left.\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}\right)$	± 20	mA
I_{OK}	Output clamp current ${ }^{(2)}$	$\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\left.\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right)$	± 20	mA
I_{O}	Continuous output current	$\left(\mathrm{V}_{\mathrm{O}}=0\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$	± 25	mA
	Continuous current through V_{CC} or GND		± 50	mA
$\mathrm{~T}_{J}$	Junction temperature		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

5.2 Recommended Operating Conditions ${ }^{(1)}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report Implications of Slow or Floating SMOS Inputs, literature number SCBA004.

5.3 Thermal Information

THERMAL METRIC		D (SOIC)	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance ${ }^{(1)}$	117.2	68.6	87.4	137.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	77.2	61.1	44.9	75.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	75.6	48.6	49.6	82.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JT }}$	Junction-to-top characterization parameter	38.1	33.9	12.2	25.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\Psi_{\text {JB }}$	Junction-to-board characterization parameter	75.3	48.4	49.2	81.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

5.3 Thermal Information (continued)

THERMAL METRIC		D (SOIC)	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	
$\mathrm{R}_{\text {өJC(bot) }}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

5.4 Electrical Characteristics

Over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN74HC368		SN74HC368		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
$\mathrm{V}_{\text {OH }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OH}}=-20 \mu \mathrm{~A}$		2	1.9	1.998		1.9		1.9		V
			4.5	4.4	4.499		4.4		4.4			
			6	5.9	5.999		5.9		5.9			
		$\mathrm{l}_{\text {OH }}-6 \mathrm{~mA}$	4.5	3.98	4.3		3.7		3.84			
		$\mathrm{l}_{\mathrm{OH}}=-7.8 \mathrm{~mA}$	6	5.48	5.8		5.2		5.34			
$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{l}_{\mathrm{OL}}=20 \mu \mathrm{~A}$	2		0.002	0.1		0.1		0.1	V	
			4.5		0.001	0.1		0.1		0.1		
			6		0.001	0.1		0.1		0.1		
		$\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$	4.5		0.17	0.26		0.4		0.33		
		$\mathrm{l}_{\mathrm{OL}}=7.8 \mathrm{~mA}$	6		0.17	0.26		0.4		0.33		
$1 /$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or 0		6		± 0.1	± 100		± 1000		± 1000	nA	
loz	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {cc }}$ or 0		6		± 0.01	± 0.5		± 10		± 5	$\mu \mathrm{A}$	
Icc	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $0, \mathrm{I}_{\mathrm{O}}=0$		6			8		160		80	$\mu \mathrm{A}$	
Ci_{i}			2 to 6		3	10		10		10	pF	

5.5 Switching Characteristics

Over recommended operating free-air temperature range, $C_{L}=50 \mathrm{pF}$. See Parameter Measurement Information

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54HC368	SN74HC368	
				MIN TYP	MAX	MIN MAX	MIN MAX	
t_{pd}	A	Y	2	50	95	145	120	ns
			4.5	12	19	29	24	
			6	10	16	25	20	
$\mathrm{t}_{\text {en }}$	OE	Y	2	100	190	285	238	ns
			4.5	26	38	57	48	
			6	21	32	48	41	
$\mathrm{t}_{\text {dis }}$	OE	Y	2	50	175	265	240	ns
			4.5	21	35	53	48	
			6	19	30	45	41	
t_{t}		Any	2	28	60	90	75	ns
			4.5	8	12	18	15	
			6	6	10	15	13	

5.5 Switching Characteristics

Over recommended operating free-air temperature range, $C_{L}=150 \mathrm{pF}$. See Parameter Measurement Information

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC368	SN74HC368	
				MIN	TYP	MAX	MIN MAX	MIN MAX	
$\mathrm{t}_{\text {pd }}$	A	Y	2		70	120	180	150	ns
			4.5		17	24	36	30	
			6		14	20	31	25	
$\mathrm{t}_{\text {en }}$	$\overline{O E}$	Y	2		140	1230	345	285	ns
			4.5		30	46	69	57	
			6		28	39	59	48	
t_{t}		Any	2		45	210	315	265	ns
			4.5		17	42	63	53	
			6		13	36	53	45	

5.6 Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

		Test Conditions	TYP	UNIT
C_{pd}	Power dissipation capacitance per buffer/driver	No load	35	pF

6 Parameter Measurement Information

$t_{p d}$ is the maximum between $t_{\text {PLH }}$ and $t_{\text {PHL }}$
t_{t} is the maximum between $t_{T L H}$ and $t_{T H L}$

Figure 6-1.

Figure 6-2. Voltage Waveforms
Propagation Delay and Output Transitions Times

PARAMETER		RL	C_{L}	S1	S2
$t_{\text {en }}$	tPZH	$1 \mathrm{k} \Omega$	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Closed
	tPZL			Closed	Open
$\mathrm{t}_{\text {dis }}$	tPHZ	$1 \mathrm{k} \Omega$	50 pF	Open	Closed
	tpLZ			Closed	Open
$t_{p d}$ or t_{t}		--	$\begin{gathered} 50 \mathrm{pF} \\ \text { or } \\ 150 \mathrm{pF} \end{gathered}$	Open	Open

Figure 6-3. Voltage Waveforms Enable and Disable Times for 3-State Outputs

Figure 6-4. Voltage Waveform Input Rise and Fall Times
A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when diabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when diabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following charactersitics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.
E. $\mathrm{t}_{\mathrm{PLZ}}$ and $\mathrm{t}_{\mathrm{PHZ}}$ are the same as $\mathrm{t}_{\text {dis }}$.
F. $t_{\text {PZL }}$ and $t_{\text {PZH }}$ are the same as $t_{e n}$.

7 Detailed Description

7.1 Overview

These hex inverting buffers and line drivers are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The 'HC368 devices are organized as dual 4 -line and 2 -line buffers/drivers with active-low output-enable (10E and $2 \overline{\mathrm{OE}}$) inputs. When $\overline{\mathrm{OE}}$ is low, the device passes inverted data from the A inputs to the Y outputs. When $\overline{\mathrm{OE}}$ is high, the outputs are in the high-impedance state.

7.2 Functional Block Diagram

Figure 7-1. Functional Block Diagram

7.3 Device Functional Modes

Function Table (Each buffer/driver)	
INPUTS OUTPUT OE A Y H X Z L H L L L H	

8 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Recommended Operating Conditions. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A $0.1-\mu \mathrm{F}$ capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The $0.1-\mu \mathrm{F}$ and $1-\mu \mathrm{F}$ capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

9 Layout

9.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC}, whichever makes more sense for the logic function or is more convenient.

10 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

10.1 Documentation Support

10.1.1 Related Documentation

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

TI E2E ${ }^{\text {TM }}$ support forums are an engineer's go-to source for fast, verified answers and design help - straight from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

TI E2E ${ }^{\text {TM }}$ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Texas
PACKAGE OPTION ADDENDUM
INSTRUMENTS
www.ti.com
18-May-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-86812012A	ACTIVE	LCCC	FK	20	55	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \hline 5962- \\ & 86812012 A \\ & \text { SNJ54HC } \\ & \text { 368FK } \end{aligned}$	Samples
5962-8681201EA	ACTIVE	CDIP	J	16	25	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962-8681201EA } \\ & \text { SNJ54HC368J } \end{aligned}$	Samples
JM38510/65709BEA	ACTIVE	CDIP	J	16	25	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { JM38510/ } \\ & \text { 65709BEA } \end{aligned}$	Samples
M38510/65709BEA	ACTIVE	CDIP	J	16	25	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { JM38510/ } \\ & \text { 65709BEA } \end{aligned}$	Samples
SN54HC368J	ACTIVE	CDIP	J	16	25	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	SN54HC368J	Samples
SN74HC368DR	ACTIVE	SOIC	D	16	2500	RoHS \& Green	NIPDAU \| SN	Level-1-260C-UNLIM	-40 to 85	HC368	Samples
SN74HC368N	ACTIVE	PDIP	N	16	25	RoHS \& Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC368N	Samples
SN74HC368NE4	ACTIVE	PDIP	N	16	25	RoHS \& Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC368N	Samples
SN74HC368NSR	ACTIVE	SO	NS	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC368	Samples
SN74HC368PWR	ACTIVE	TSSOP	PW	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC368	Samples
SNJ54HC368FK	ACTIVE	LCCC	FK	20	55	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & 5962- \\ & 86812012 A \\ & \text { SNJ54HC } \\ & \text { 368FK } \end{aligned}$	Samples
SNJ54HC368J	ACTIVE	CDIP	J	16	25	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962-8681201EA } \\ & \text { SNJ54HC368J } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. Tl may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis

OTHER QUALIFIED VERSIONS OF SN54HC368, SN74HC368 :

- Catalog : SN74HC368
- Military : SN54HC368

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog produc
- Military - QML certified for Military and Defense Applications

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

L Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74HC368DR	SOIC	D	16	2500	330.0	16.4	6.6	9.3	2.1	8.0	16.0	Q1
SN74HC368DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC368NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74HC368PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74HC368PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC368DR	SOIC	D	16	2500	366.0	364.0	50.0
SN74HC368DR	SOIC	D	16	2500	356.0	356.0	35.0
SN74HC368NSR	SO	NS	16	2000	356.0	356.0	35.0
SN74HC368PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
SN74HC368PWR	TSSOP	PW	16	2000	356.0	356.0	35.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	$\mathbf{W}(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	B (mm)
5962-86812012A	FK	LCCC	20	55	506.98	12.06	2030	NA
SN74HC368N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC368N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC368NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC368NE4	N	PDIP	16	25	506	13.97	11230	4.32
SNJ54HC368FK	FK	LCCC	20	55	506.98	12.06	2030	NA

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm , per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm , per side.

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:7X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2024, Texas Instruments Incorporated

