SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

 Member of the Texas Instruments Widebus™ Family 	DGG OR DG (TOP	V PACKAGE VIEW)
 TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes 	1DIR 1 1A1 2	56]10E 55]1B1
 OECTM Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference 	1A2 []3 GND []4	54] 1B2 53] GND
 Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels 	1A3 [5 1A4 [6	52] 1B3 51] 1B4
 LVTTL Interfaces Are 5-V Tolerant High Drive CTL B Outputs (400 mA) 	V _{CC} [] 7 GND [] 8	50
 High-Drive GTLP Outputs (100 mA) LVTTL Outputs (-24 mA/24 mA) 	1A5 🛛 9 1A6 🗖 10	48] 1B5 47] 1B6
 Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for 	GND 11 1A7 12	46 GND 45 1B7
Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads	1A8 🛛 13 GND 🚺 14	44 1B8 43 BIAS V _{CC}
 I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion 	ERC [15 2A1 [16	42 0 V _{REF} 41 0 2B1
 Bus Hold on A-Port Data Inputs 	2A2 🛛 17	40 2 B2
 Distributed V_{CC} and GND Pins Minimize 	GND 18	39 GND
High-Speed Switching Noise	2A3 [] 19	38 2B3 37 2B4
 Latch-Up Performance Exceeds 100 mA Per 	2A4 [20 GND [21	37 264 36 GND
JESD 78, Class II		35 V _{CC}
description	2A5 23	34 2B5
	2A6 🛛 24	33 2B6
The SN74GTLPH1645 is a high-drive, 16-bit bus	GND 25	32 GND
transceiver that provides LVTTL-to-GTLP and	2A7 []26	31 2B7
GTLP-to-LVTTL signal-level translation. It is partitioned as two 8-bit transceivers. The device	2A8 27 2DIR 28	30 2B8 29 20E
		∠∍µ∠∪⊏

operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω .

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH1645 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2$ V and $V_{REF} = 0.8$ V) or GTLP ($V_{TT} = 1.5$ V and $V_{REF} = 1$ V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments

provides a high-speed interface between cards

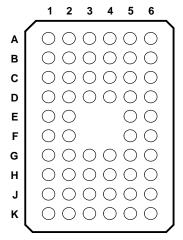
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

description (continued)

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS V_{CC}. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.


This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

GQL PACKAGE (TOP VIEW)

terminal assignments

	1	2	3	4	5	6
Α	1A2	1A1	1DIR	1 <mark>0E</mark>	1B1	1B2
в	1A4	1A3	GND	GND	1B3	1B4
С	1A5	GND	V _{CC}	V _{CC}	GND	1B5
D	1A7	1A6	GND	GND	1B6	1B7
Е	GND	1A8			1B8	$BIASV_{CC}$
F	ERC	2A1			2B1	V _{REF}
G	2A2	2A3	GND	GND	2B3	2B2
н	2A4	GND	VCC	VCC	GND	2B4
J	2A5	2A6	GND	GND	2B6	2B5
κ	2A7	2A8	2DIR	2 <mark>0E</mark>	2B8	2B7

ORDERING INFORMATION

ТА	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74GTLPH1645DGGR	GTLPH1645
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74GTLPH1645DGVR	GL45
	VFBGA – GQL	Tape and reel	SN74GTLPH1645GQLR	GL45

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLPH1645 is a high-drive (100 mA), 16-bit bus transceiver partitioned as two 8-bit segments and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. \overline{OE} can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.

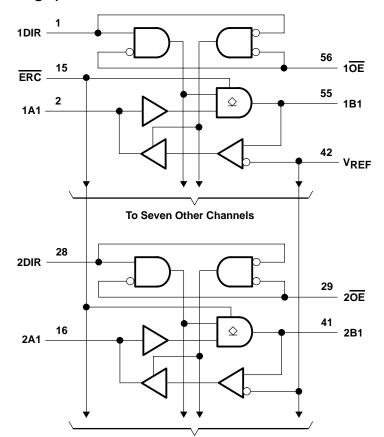
For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to A to B, except \overline{OE} and DIR are low.

Function Tables

		OUTFUT CONTRO			
INP	UTS	Ουτρυτ	MODE		
OE	DIR	001201	WODE		
н	Х	Z	Isolation		
L	L	B data to A port			
L	Н	A data to B port	True transparent		

OUTPUT CONTROL


B-PORT EDGE-RATE CONTROL (ERC)

INPU	JT ERC	OUTPUT
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE
L	GND	Slow
н	VCC	Fast

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

logic diagram (positive logic)

To Seven Other Channels

Pin numbers shown are for the DGG and DGV packages.

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} and BIAS V _{CC} –0.5 V to 4.6 V Input voltage range, V _I (see Note 1): A port, ERC, and control inputs–0.5 V to 7 V	
B port and V _{REF}	V
Voltage range applied to any output in the high-impedance or power-off state, $V_{f O}$	
(see Note 1): A port	V
B port	V
Current into any output in the low state, I _O : A port	A
B port	A
Current into any A port output in the high state, I _O (see Note 2)	A
Continuous current through each V _{CC} or GND ±100 m/	
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I_{OK} ($V_O < 0$)	
Package thermal impedance, 0, JA (see Note 3): DGG package	
DGV package	Ν
GQL package	Ν
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V
\/		GTL	1.14	1.2	1.26	v
VTT	Termination voltage	GTLP	1.35	1.5	1.65	V
\/	Potoronoo voltogo	GTL	0.74	0.8	0.87	v
VREF	Reference voltage	GTLP	0.87	1	1.1	v
. V.	Input voltage	B port			V _{TT}	v
VI	Input voltage	Except B port		Vcc	5.5	v
		B port	V _{REF} +0.05			
VIH	/IH High-level input voltage	ERC	V _{CC} -0.6	Vcc	5.5	V
		Except B port and ERC	2			1
		B port			V _{REF} -0.05	
VIL	Low-level input voltage	ERC		GND	0.6	V
		Except B port and ERC			0.8	1
IIK	Input clamp current				-18	mA
ЮН	High-level output current	A port			-24	mA
1		A port			24	A
I _{OL} Low-le	Low-level output current	B port			100	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled			10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		20			μs/V
T _A	Operating free-air temperature	Operating free-air temperature			85	°C

NOTES: 4. All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

 V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

PARAMETER **TEST CONDITIONS** MIN TYP[†] MAX UNIT -1.2 V VIK $V_{CC} = 3.15 V,$ $I_{I} = -18 \text{ mA}$ V_{CC} = 3.15 V to 3.45 V, $I_{OH} = -100 \,\mu \overline{A}$ V_{CC}-0.2 V ۷он A port $I_{OH} = -12 \text{ mA}$ 2.4 V_{CC} = 3.15 V IOH = -24 mA 2 V_{CC} = 3.15 V to 3.45 V, $I_{OL} = 100 \, \mu A$ 0.2 I_{OL} = 12 mA 0.4 A port V_{CC} = 3.15 V 0.5 $I_{OI} = 24 \text{ mA}$ ٧ VOL IOL = 10 mA 0.2 0.4 B port V_{CC} = 3.15 V IOL = 64 mA 0.55 $I_{OI} = 100 \text{ mA}$ $V_{I} = 0 \text{ or } 5.5 \text{ V}$ ±10 lj. Control inputs V_{CC} = 3.45 V, μΑ VO = VCC10 A port V_{CC} = 3.45 V μΑ югн‡ B port $V_{0} = 1.5 V$ 10 -10 $V_0 = GND$ IOZL[‡] A and B ports VCC = 3.45 V, μΑ IBHL§ $V_{CC} = 3.15 V_{,}$ $V_{I} = 0.8 V$ 75 A port μA I_{BHH}¶ A port V_{CC} = 3.15 V, $V_I = 2 V$ -75 μΑ $V_I = 0$ to V_{CC} IBHLO# A port V_{CC} = 3.45 V, 500 μA μA Івнно A port V_{CC} = 3.45 V, $V_I = 0$ to V_{CC} -500 Outputs high 40 $V_{CC} = 3.45 \text{ V}, I_{O} = 0,$ A or B port Outputs low 40 V_{I} (A or control input) = V_{CC} or GND, mΑ ICC VI (B port) = VTT or GND Outputs disabled 40 V_{CC} = 3.45 V, One A-port or control input at V_{CC} – 0.6 V, ∆lCC☆ 1.5 mΑ Other A or control inputs at V_{CC} or GND Ci Control inputs VI = 3.15 V or 0 4 5 pF V_O = 3.15 V or 0 A port 6.5 7.5 pF Cio B port $V_{O} = 1.5 V \text{ or } 0$ 9.5 11

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] For I/O ports, the parameters I_{OZH} and I_{OZL} include the input leakage current.

§ The bus-hold circuit can sink at least the minimum low sustaining current at VILmax. IBHL should be measured after lowering VIN to GND and then raising it to VILmax.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH}min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH}min.

An external driver must source at least IBHLO to switch this node from low to high.

An external driver must sink at least IBHHO to switch this node from high to low.

 * This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

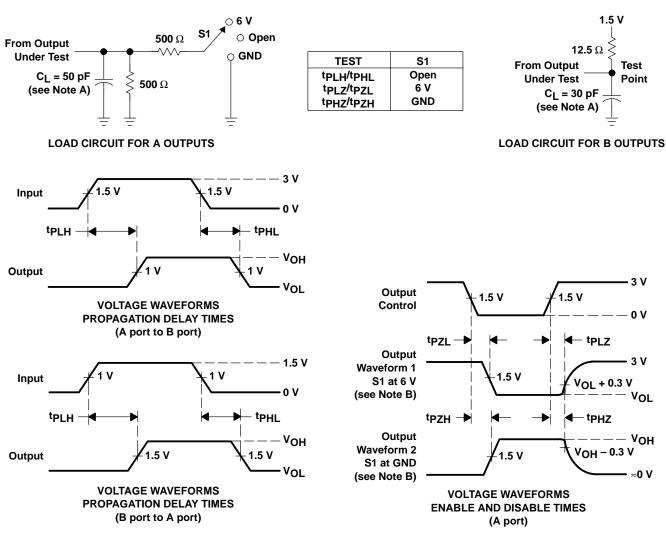
hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 5.5 \text{ V}$		10	μΑ
IOZPU	$V_{CC} = 0$ to 1.5 V,	V_{O} = 0.5 V to 3 V,	OE = 0		±30	μA
IOZPD	$V_{CC} = 1.5 V \text{ to } 0,$	V_{O} = 0.5 V to 3 V,	$\overline{OE} = 0$		±30	μΑ

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MAX	UNIT
loff	$V_{CC} = 0,$	BIAS $V_{CC} = 0$,	$V_{I} \text{ or } V_{O} = 0 \text{ to } 1.5 \text{ V}$		10	μA
IOZPU	$V_{CC} = 0$ to 1.5 V,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μΑ
IOZPD	V _{CC} = 1.5 V to 0,	BIAS $V_{CC} = 0$,	$V_{O} = 0.5 V$ to 1.5 V, $\overline{OE} = 0$		±30	μA
	V _{CC} = 0 to 3.15 V	BIAS V _{CC} = 3.15 V to 3.45 V,			5	mA
ICC (BIAS VCC)	$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V}$	BIAS VCC = 3.15 V t0 3.45 V,	V_O (B port) = 0 to 1.5 V		10	μA
VO	V _{CC} = 0,	BIAS V _{CC} = 3.3 V,	IO = 0	0.95	1.05	V
IO	$V_{CC} = 0,$	BIAS V _{CC} = 3.15 V to 3.45 V,	V _O (B port) = 0.6 V	-1		μA


switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	MIN	түр‡	МАХ	UNIT		
^t PLH	A	В	Slow	3.9		7.2	ns		
^t PHL		В	310W	3.1		8.4	115		
^t PLH	A	В	Fast	2.6		5.7	ns		
^t PHL		В	rasi	2.1		5.8	115		
^t en	OE	В	Slow	4.1		7.3	ns		
^t dis	UE	В	310W	4		9.4	115		
^t en	OE	В	Fast	2.9		5.9	ns		
^t dis	UE	В	1 431	4		6.9	115		
+	Rise time, B outp	ute (20% to 80%)	Slow		3		ns		
t _r	Kise time, B outp		Fast		1.5		115		
+/	Fall time Route	ute (80% to 20%)	Slow		4		ns		
t _f	Fall time, B outputs (80% to 20%)		Fast		Fast	2		2.5	
^t PLH	в	А		0.5		6.7			
^t PHL		A	_	1.2		4.5	ns		
^t en	OE	А		1.1		6.3	ns		
^t dis		~		1.7		5.1	115		

[†] Slow (ERC = GND) and Fast (ERC = V_{CC}) [‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_O = 50 Ω , t_f \approx 2 ns, t_f \approx 2 ns. D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES290D - OCTOBER 1999 - REVISED SEPTEMBER 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

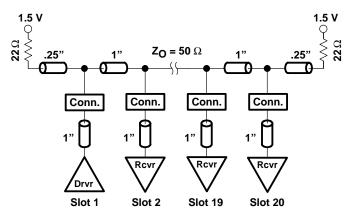


Figure 2. High-Drive Test Backplane

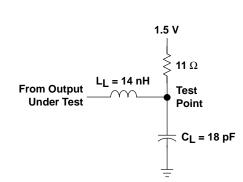


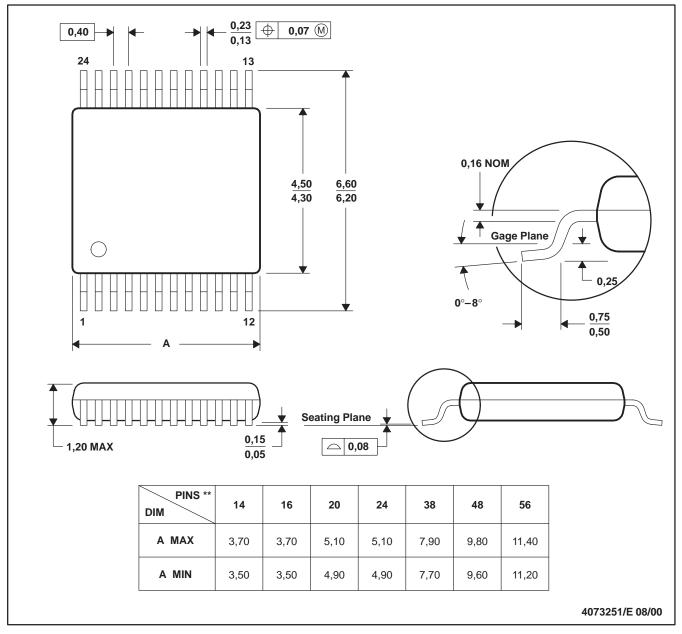
Figure 3. High-Drive RLC Network

switching characteristics over recommended ranges of supply voltage and operating free-air	
temperature, V _{TT} = 1.5 V and V _{REF} = 1 V for GTLP (see Figure 3)	

FROM (INPUT)	TO (OUTPUT)	EDGE RATE [†]	түр‡	UNIT
٨	P	Slow	4.9	ns
ň	в	310W	4.9	115
٨	R	Fact	3.7	ns
ň	В	Fasi	3.7	115
	P	Slow	5.1	
ÛE	D	310W	5.4	ns
	P	Foot	4.1	-
UE	D	Fasi	4.1	ns
Diag time. Plaute	$u_{10}(200\% to 800\%)$	Slow	2	
Rise time, B outp	uis (20% to 80%)	Fast	1.2	ns
Fall time. Disuta	rta (800/ ta 200/)	Slow	2.5	
Fail time, B outpu	JIS (80% 10 20%)	Fast	1.8	ns
	FROM (INPUT) A A OE OE Rise time, B outp	FROM (INPUT)TO (OUTPUT)ABABOEB	FROM (INPUT)TO (OUTPUT)EDGE RATE1ABSlowABFastOEBSlowOEBSlowOEBFastRise time, B outputs (20% to 80%)FastFall time, B outputs (80% to 20%)Slow	$ \begin{array}{c c} \mbox{FROM} & \mbox{TO} & \mbox{EDGE RATE}^{\mbox{TO}} & \mbox{TYP}^{\mbox{TYP}}^{\mbox{TYP}}^{\mbox{TYP}^{\mbox{TYP}}^{\mbox{TYP}}^{\mbox{TYP}^{\mbox{TYP}}^{\mbox{TYP}}^{\mbox{TYP}^{\mbox{TYP}^{\mbox{TYP}}^{\mbox{TYP}}^{\mbox{TYP}}^{\mbox{TYP}}^{\mbox{TYP}}^{\mbox{TYP}}^{\mbox{TYP}}}}}}}}}}}}}}}}}}} \\ A & & & & & & & & & & & & & & & & & &$

[†] Slow ($\overline{\text{ERC}} = \text{GND}$) and Fast ($\overline{\text{ERC}} = \text{V}_{\text{CC}}$)

[‡] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

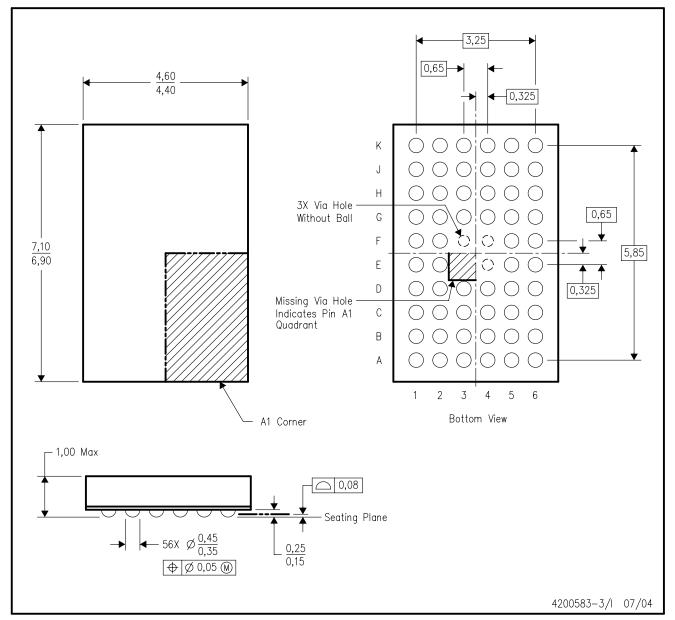
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-225 variation BA.

D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.

MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated