www.ti.com

SCBS480K-JUNE 1994-REVISED JULY 2005

FEATURES

- Members of Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- UBT ${ }^{\text {т }}$ Transceivers Combine D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, or Clock-Enabled Modes
- ОЕС ${ }^{\text {тм }}$ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Translate Between GTL/GTL+ Signal Levels and LVTTL Logic Levels
- Support Mixed-Mode (3.3 V and 5 V) Signal Operation on A-Port and Control Inputs
- Identical to '16601 Function
- $I_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port
- Distributed $V_{C c}$ and GND Pins Minimize High-Speed Switching Noise
- Latch-Up Performance Exceeds 500 mA Per JESD 17
SN54GTL16612... WD PACKAGE
SN74GTL16612... DGG OR DL PACKAGE
(TOP VIEW)

DESCRIPTION/ORDERING INFORMATION

The 'GTL16612 devices are 18-bit UBT ${ }^{\text {TM }}$ transceivers that provide LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation. They combine D-type flip-flops and D-type latches to allow for transparent, latched, clocked, and clock-enabled modes of data transfer identical to the '16601 function. The devices provide an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC ${ }^{\text {TM }}$ circuitry.

The user has the flexibility of using these devices at either $G T L\left(V_{T T}=1.2 \mathrm{~V}\right.$ and $\mathrm{V}_{\mathrm{REF}}=0.8 \mathrm{~V}$) or the preferred higher noise margin $G T L+\left(\mathrm{V}_{\mathrm{TT}}=1.5 \mathrm{~V}\right.$ and $\left.\mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}\right)$ signal levels. $\mathrm{GTL}+$ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. $\mathrm{V}_{\text {REF }}$ is the reference input voltage for the B port.
$\mathrm{V}_{\mathrm{CC}}(5 \mathrm{~V})$ supplies the internal and GTL circuitry while $\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})$ supplies the LVTTL output buffers.

[^0]SCBS480K-JUNE 1994-REVISED JULY 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Data flow in each direction is controlled by output-enable ($\overline{\mathrm{OEAB}}$ and $\overline{\mathrm{OEBA}}$), latch-enable(LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CEAB and CEBA) inputs. For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if $\overline{C E A B}$ is low and CLKAB is held at a high or low logic level. If LEAB is low, the A data is stored in the latch/flip-flop on the low-to-high transition of CLKAB if CEAB also is low. When OEAB is low, the outputs are active. When $\overline{O E A B}$ is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that for A to B, but uses $\overline{O E B A}, ~ L E B A, ~ C L K B A, ~ a n d ~ C E B A . ~ . ~$
These devices are fully specified for partial-power-down applications using $\mathrm{I}_{\text {off. }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

$\mathbf{T}_{\mathbf{A}}$	PACKAG $^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		SSOP - DL	Tube	SN74GTL16612DL

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE ${ }^{(1)}$

INPUTS					$\begin{gathered} \text { OUTPUT } \\ \text { B } \end{gathered}$	MODE
CEAB	OEAB	LEAB	CLKAB	A		
X	H	X	X	X	Z	Isolation
L	L	L	H	X	$\mathrm{B}_{0}{ }^{(2)}$	
L	L	L	L	X	$\mathrm{B}_{0}{ }^{(3)}$	Latched storage of A data
X	L	H	X	L	L	Transparent
X	L	H	X	H	H	Transparent
L	L	L	\uparrow	L	L	Clocked storage of A data
L	L	L	\uparrow	H	H	Clocked storage of A data
H	L	L	X	X	$\mathrm{B}_{0}{ }^{(3)}$	Clock inhibit

[^1]TEXAS
INSTRUMENTS
www.ti.com

LOGIC DIAGRAM (POSITIVE LOGIC)
CLEAB 18-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVERS

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
		3.3 V	-0.5	4.6	
$V_{C C}$	Supply voltage range	5 V	-0.5	7	v
V_{1}	Input voltage range ${ }^{(2)}$	A-port and control inputs	-0.5	7	V
V_{1}	Input volage range	B port and $\mathrm{V}_{\text {REF }}$	-0.5	4.6	
		A port	-0.5	7	V
,	Voltage range applied to any output in the high or power-off state ${ }^{(2)}$	B port	-0.5	4.6	V
	Current into any output in the low state	A port		128	
	Current into any output in the low	B port		80	
Io	Current into any A-port output in the high state ${ }^{(3)}$			64	mA
	Continuous current through each V_{CC} or GND			± 100	mA
I_{IK}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
I_{OK}	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
	Package thermal impedance	DGG package		64	
$ө_{\text {JA }}$	Package thermal impedance ${ }^{(4)}$	DL package		56	C/W
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(3) This current flows only when the output is in the high state and $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)(2)(3)(4)}$

(1) All unused inputs of the device must be held at $\mathrm{V}_{C C}$ or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
(2) Normal connection sequence is GND first, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ second, and $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{I} / \mathrm{O}$, control inputs, V_{TT} and $\mathrm{V}_{\mathrm{REF}}$ (any order) last.
(3) $\mathrm{V}_{T T}$ and $\mathrm{R}_{T T}$ can be adjusted to accommodate backplane impedances if the dc recommended l_{OL} ratings are not exceeded.
(4) $\mathrm{V}_{\text {REF }}$ can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}.

18-BIT LVTTL-TO-GTL/GTL+ UNIVERSAL BUS TRANSCEIVERS

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54GTL16612		SN74GTL16612		UNIT		
		MIN	TYP(1) MAX	MIN	TYP ${ }^{(1)}$ MAX					
V_{IK}				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$		-1.2		-1.2	V
V_{OH}	A port	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.15 \mathrm{~V} \text { to } \\ & 3.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\begin{array}{r} V_{C C}(3.3 \mathrm{~V}) \\ -0.2 \end{array}$		$\begin{array}{r} \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V}) \\ -0.2 \end{array}$		V		
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	2.4		2.4				
			$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	2		2				
$\mathrm{V}_{\text {OL }}$	A port	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2		0.2	V		
			$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.4		0.4			
			$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$		0.5		0.5			
			$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$		0.6		0.55			
	B port	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=4.75 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{OL}}=40 \mathrm{~mA} \end{aligned}$			0.5		0.4			
1	Control inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=0 \text { or } 3.45 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=0 \text { or } 5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$		10		10	$\mu \mathrm{A}$		
	A port	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$		1000		20			
			$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}(3.3 \mathrm{~V})$		1		1			
			$\mathrm{V}_{1}=0$		-30		-30			
	B port	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5.25 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})$		5		5			
			$\mathrm{V}_{1}=0$		-5		-5			
$\mathrm{I}_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V			1000		100	$\mu \mathrm{A}$		
$I_{\text {(hold) }}$	A port	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=4.75 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	75		75		$\mu \mathrm{A}$		
			$\mathrm{V}_{1}=2 \mathrm{~V}$	-75		-75				
			$\begin{aligned} & \mathrm{V}_{1}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \\ & (3.3 \mathrm{~V})^{(2)} \end{aligned}$		± 500		± 500			
$\mathrm{I}_{\text {OZH }}$	A port	$\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3 \mathrm{~V}$			1		1	$\mu \mathrm{A}$		
	B port	$\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})$	$=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.2 \mathrm{~V}$		10		10			
lozl	A port	$\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}$			-1		-1	$\mu \mathrm{A}$		
	B port	$\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})$	$=5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V}$		-10		-10			
$\begin{aligned} & \mathrm{lcc} \\ & (3.3 \mathrm{~V}) \end{aligned}$	A or B port	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V}) \text { or } G N D \end{aligned}$	Outputs high		1		1	mA		
			Outputs low		5		5			
			Outputs disabled		1		1			
$\begin{aligned} & \mathrm{Icc} \\ & (5 \mathrm{~V}) \end{aligned}$	A or B port	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V}) \text { or } \mathrm{GND} \end{aligned}$	Outputs high		120		120	mA		
			Outputs low		120		120			
			Outputs disabled		120		120			
$\Delta l_{\text {CC }}{ }^{(3)}$		$\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.45 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5.25 \mathrm{~V}$, A-port or control inputs at $\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})$ or GND, One input at 2.7 V			1		1	mA		
C_{i}	Control inputs	$\mathrm{V}_{1}=3.15 \mathrm{~V}$ or 0			3.512	3.5		pF		
$\mathrm{C}_{\text {io }}$	A port	$\mathrm{V}_{\mathrm{O}}=3.15 \mathrm{~V}$ or 0			1218		12	pF		
	B port				10		5			

[^2]SCBS480K-JUNE 1994-REVISED JULY 2005

Timing Requirements

over recommended ranges of supply voltage and operating free-air temperature,
$\mathrm{V}_{\mathrm{TT}}=1.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}=0.8 \mathrm{~V}$ for GTL (unless otherwise noted) (see Figure 1)

			SN54GTL16612	SN74GTL16612	
			MIN MAX	MIN MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		95	95	MHz
	Pulse duration	LEAB or LEBA high	3.3	3.3	
		CLKAB or CLKBA high or low	5.6	5.6	
		A before CLKAB \uparrow	1.3	1.3	
		B before CLKBA \uparrow	3.4	2.5	
		A before LEAB \downarrow	1.2	0	
${ }_{\text {su }}$	Setup time	B before LEBA \downarrow	1	1	ns
		$\overline{\mathrm{CEAB}}$ before CLKAB \uparrow	2.1	2	
		$\overline{\text { CEBA }}$ before CLKBA \uparrow	2.6	2.2	
		A after CLKAB \uparrow	2.9	1.6	
		B after CLKBA \uparrow	4.1	0.3	
		A after LEAB \downarrow	4.5	4	
$t_{\text {h }}$	Hold time	B after LEBA \downarrow	4.3	3.6	ns
		$\overline{\text { CEAB }}$ after CLKAB \uparrow	2	0.8	
		$\overline{\text { CEBA }}$ after CLKBA \uparrow	1.1	1.1	

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature,
$\mathrm{V}_{\mathrm{TT}}=1.2 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}=0.8 \mathrm{~V}$ for GTL (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54GTL16612			SN74GTL16612			UNIT
			MIN	TYP(1)	MAX	MIN	TYP(1)	MAX	
$\mathrm{f}_{\text {max }}$			95			95			MHz
$t_{\text {PLH }}$	A	B	1	2.8	4.5	1.5	2.8	4.1	ns
$\mathrm{t}_{\text {PHL }}$			1	2.5	4.5	1.3	2.5	4	
$\mathrm{t}_{\text {PLH }}$	LEAB	B	1	3.6	5.5	2	3.6	5.3	ns
$\mathrm{t}_{\text {PHL }}$			1	3.5	6	1.9	3.5	5.4	
$t_{\text {PLH }}$	CLKAB	B	1	3.7	5.5	2.3	3.7	5.3	ns
$\mathrm{t}_{\text {PHL }}$			1	3.4	5.5	1.9	3.4	5.4	
$\mathrm{t}_{\text {en }}$	$\overline{\text { OEAB }}$	B	1	3.3	5.5	2	3.3	5.5	ns
$\mathrm{t}_{\text {dis }}$			1	3.4	5.5	2	3.4	5.1	
t_{r}	Transition time, B outputs (0.5 V to 1 V)			1.3			1.3		ns
t_{f}	Transition time, B outputs (1 V to 0.5 V)		0.5			0.5			ns
$\mathrm{tpLH}^{\text {P }}$	B	A	2	4.1	6.9	2.1	4.1	6.3	ns
$\mathrm{t}_{\text {PHL }}$			1	2.9	5.1	1.2	2.9	4.6	
$\mathrm{tPLH}^{\text {l }}$	LEBA	A	2	3.7	6.1	2.3	3.7	5.7	ns
$\mathrm{t}_{\text {PHL }}$			1	3	5.1	1.8	3	4.8	
$t_{\text {PLH }}$	CLKBA	A	2	3.8	6.4	2.5	3.8	6.1	ns
$\mathrm{t}_{\text {PHL }}$			2	3.3	5.6	2.3	3.3	5.2	
$\mathrm{t}_{\text {en }}$	OEBA	A	1	5	7.5	2.3	5	7.4	ns
$\mathrm{t}_{\text {dis }}$			2	4.3	6.9	2.5	4.3	6.4	

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Timing Requirements

over recommended ranges of supply voltage and operating free-air temperature,
$\mathrm{V}_{\mathrm{TT}}=1.5 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}=1 \mathrm{~V}$ for $\mathrm{GTL}+$ (unless otherwise noted) (see Figure 1)

			SN54GTL16612	SN74GTL16612	
			MIN MAX	MIN MAX	
$\mathrm{f}_{\text {clock }}$	Clock frequency		95	95	MHz
	Pulse duration	LEAB or LEBA high	3.3	3.3	
		CLKAB or CLKBA high or low	5.6	5.6	
		A before CLKAB \uparrow	1.3	1.3	
		B before CLKBA \uparrow	3.2	2.3	
		A before LEAB \downarrow	1.2	0	
$\mathrm{t}_{\text {su }}$	Setup time	B before LEBA \downarrow	1.3	1.3	ns
		$\overline{\mathrm{CEAB}}$ before CLKAB \uparrow	2.1	2	
		$\overline{\text { CEBA }}$ before CLKBA \uparrow	2.6	2.2	
		A after CLKAB \uparrow	2.9	1.6	
		B after CLKBA \uparrow	4.4	0.3	
		A after LEAB \downarrow	4.5	4	
$t_{\text {h }}$	Hold time	B after LEBA \downarrow	4.3	3.6	ns
		$\overline{\mathrm{CEAB}}$ after CLKAB \uparrow	2	0.8	
		$\overline{\text { CEBA }}$ after CLKBA \uparrow	1.1	1.1	

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature,
$\mathrm{V}_{\mathrm{TT}}=1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}$ for $\mathrm{GTL}+$ (see Figure 1)

PARAMETER	$\begin{gathered} \text { FROM } \\ \text { (INPUT) } \end{gathered}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54GTL16612			SN74GTL16612			UNIT
			MIN	TYP(1)	MAX	MIN	TYP(1)	MAX	
$\mathrm{f}_{\text {max }}$			95			95			MHz
$\mathrm{t}_{\text {PLH }}$	A	B	1	2.8	4.5	1.5	2.8	4.1	ns
$\mathrm{t}_{\text {PHL }}$			1	2.5	4.6	1.3	2.5	4.1	
tPLH	LEAB	B	1	3.6	5.5	2	3.6	5.3	ns
$\mathrm{t}_{\text {PHL }}$			1	3.5	6.1	1.9	3.5	5.5	
$\mathrm{t}_{\text {PLH }}$	CLKAB	B	1	3.7	5.5	2.3	3.7	5.3	ns
$\mathrm{t}_{\text {PHL }}$			1	3.4	5.6	1.9	3.4	5.5	
$\mathrm{t}_{\text {PLH }}$	$\overline{\text { OEAB }}$	B	1	3.4	5.5	2	3.4	5.1	ns
$\mathrm{t}_{\text {PHL }}$			1	3.3	5.6	2	3.3	5.6	
t_{r}	Transition time, B outputs (0.5 V to 1 V)			1.5			1.5		ns
t_{f}	Transition time, B outputs (1 V to 0.5 V)		0.8			0.8			ns
$\mathrm{t}_{\text {PLH }}$	B	A	1.9	4	6.9	2	4	6.3	ns
$\mathrm{t}_{\text {PHL }}$			0.9	2.8	4.9	1.1	2.8	4.4	
$\mathrm{t}_{\text {PLH }}$	LEBA	A	2	3.7	6.1	2.3	3.7	5.7	ns
$\mathrm{t}_{\text {PHL }}$			1	3	5.1	1.8	3	4.8	
$\mathrm{t}_{\text {PLH }}$	CLKBA	A	2	3.8	6.4	2.5	3.8	6.1	ns
$\mathrm{t}_{\text {PHL }}$			2	3.3	5.6	2.3	3.3	5.2	
$\mathrm{t}_{\text {en }}$	OEBA	A	1	5	7.5	2.3	5	7.4	ns
$\mathrm{t}_{\text {dis }}$			2	4.3	6.9	2.5	4.3	6.4	

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

PARAMETER MEASUREMENT INFORMATION
$V_{T T}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0.8 \mathrm{~V}$ for $G T L$ and $V_{T T}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1 \mathrm{~V}$ for $G T L+$

LOAD CIRCUIT FOR A OUTPUTS

TEST	S1
$\mathbf{t}_{\text {PLH }} / \mathbf{t}_{\text {PHL }}$	Open
$\mathbf{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	6 V
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND

VOLTAGE WAVEFORMS
PULSE DURATION
$\left(V_{M}=1.5 \mathrm{~V} \text { for A port and } \mathrm{V}_{\text {REF }} \text { for B port }\right)^{(1)}$

(1) All control inputs are TTL levels.

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5962-9689001QXA | ACTIVE | CFP | WD | 56 | 1 | TBD | A42 | N/A for Pkg Type |
| 74GTL16612DGGRE4 | ACTIVE | TSSOP | DGG | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| 74GTL16612DGGRG4 | ACTIVE | TSSOP | DGG | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74GTL16612DGGR | ACTIVE | TSSOP | DGG | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74GTL16612DL | ACTIVE | SSOP | DL | 56 | 20 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74GTL16612DLG4 | ACTIVE | SSOP | DL | 56 | 20 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74GTL16612DLR | ACTIVE | SSOP | DL | 56 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74GTL16612DLRG4 | ACTIVE | SSOP | DL | 56 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SNJ54GTL16612WD | ACTIVE | CFP | WD | 56 | 1 | TBD | A42 | N/A for Pkg Type |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ		Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	Pin1 Quadrant
SN74GTL16612DGGR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1
SN74GTL16612DLR	SSOP	DL	56	1000	330.0	32.4	11.35	18.67	3.1	16.0	32.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74GTL16612DGGR	TSSOP	DGG	56	2000	346.0	346.0	41.0
SN74GTL16612DLR	SSOP	DL	56	1000	346.0	346.0	49.0

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only
E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers

Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsw.ti.com
www.ti.com/clocks
nterface.ti.com
ogic.ti.com
oower.ticom
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprt

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotiva
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontro
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	Www.ti.com/security
Telephony	Www.ti.com/telephony
Video \& Imaging	www.ti.com/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
 Widebus, UBT, OEC are trademarks of Texas Instruments.

[^1]: (1) A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA, LEBA, CLKBA, and CEBA.
 (2) Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low
 (3) Output level before the indicated steady-state input conditions were established

[^2]: (1) All typical values are at $\mathrm{V}_{\mathrm{CC}}(3.3 \mathrm{~V})=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}(5 \mathrm{~V})=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
 (3) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

