mDOC H3

Embedded Flash Drive (EFD) featuring Embedded TrueFFS® Flash Management Software

Data Sheet, June 2006

HIGHLIGHTS

mDOC H3 is an Embedded Flash Drive (EFD) designed for mobile handsets and consumer electronics devices. mDOC H3 is the new generation of the successful msystems' mDOC product family, enabling tens of millions of handsets and other mobile devices since the year 2000.

mDOC H3 is a hybrid device combining an embedded thin flash controller and standard flash memory.

In addition to the high reliability and high system performance offered by the current mDOC family of products, mDOC H3 offers plug-and-play integration, support for multiple NAND technologies and more features such as advanced power management schemes.

mDOC H3 uses the most advanced Multi-Level Cell (MLC) and binary (SLC) NAND flash technologies, enhanced by msystems' proprietary TrueFFS embedded flash management software running as firmware on the flash controller.

The breakthrough in performance, size, cost and design makes mDOC H3 the ideal solution for mobile handsets and consumer electronics manufacturers who require easy integration, fast time to market, high-capacity, small form factor, high-performance and most importantly, high reliable storage.

mDOC H3 enables multimedia driven applications such as music, photo, video, TV, GPS, games, email, office and other applications.

EMBEDDED TRUEFFS

msystems' proprietary TrueFFS flash management software is now embedded within the mDOC H3 device and runs as firmware from the flash controller.

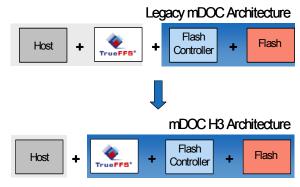


Figure 1: TrueFFS - Legacy mDOC vs. mDOC H3 Architecture

msystems

Embedded TrueFFS enables mDOC H3 to fully emulate a hard disk to the host processor, enabling read/write operations that are identical to a standard, sector-based hard drive. In addition, Embedded TrueFFS employs patented methods, such as virtual mapping, dynamic and static wear-leveling, and automatic block management to ensure high data reliability and maximize flash life expectancy.

Furthermore, it provides performance enhancements such as multi-plane operations, DMA support, Burst operation and Dual Data RAM buffering.

mDOC H3 extended features are enabled by a small driver that runs on the host side, called DOC driver. DOC driver provides the host OS with a standard Block Device interface. The combination of Embedded TrueFFS and DOC driver enables a practically Plug & Play integration in the system.

PLUG-AND-PLAY INTEGRATION

mDOC H3 optimized architecture with Embedded TrueFFS eliminates the need for complicated software integration and testing processes and enables a practically plug-andplay integration in the system.

The replacement of one mDOC H3 device with another, of a newer generation, requires virtually no changes to the host. This makes mDOC H3 the perfect solution for platforms and reference designs, as it allows for the utilization of more advanced NAND Flash technology with minimal integration or qualification efforts.

Embedded TrueFFS running from mDOC H3 means there is no need to modify and requalify the flash management software on the host system, or update mass production tools.

MULTIPLE FLASH SUPPORT

mDOC H3 with Embedded TrueFFS enables access to the most advanced binary SLC NAND and MLC NAND flash technology, making mDOC H3 the only multi-sourced and multi-technology EFD.

Embedded TrueFFS overcomes SLC and MLC NAND-related error patterns by using a robust error detection and correction (EDC/ECC) mechanism.

mDOC H3 optimized architecture with Embedded TrueFFS guarantees high reliability and high system performance for whatever flash technology or density utilized.

MDOC H3 Provides:

- Flash disk for both code and data storage
- Code and data storage protection
- Low voltage:
 - 1.8V Core and I/O
 - 3.3V Core and 3.3V/1.8V I/O (auto-detect)
- Current Consumption
 - □ Active mode: 30mA
 - □ Power Save mode: 20mA
 - □ Deep Power-Down mode: 45uA
 - Standby mode: up to 10mA
- 1Gb (128MB) 16Gb (2GB) data storage capacity, with device cascading options for up to 32Gb (4GB).
- Enhanced Programmable Boot Block (32KB) enabling eXecute In Place (XIP) functionality using 16-bit access.
- Small form factors:
 - □ mDOC H3 1Gb/2Gb 115-ball Fine-Pitch Ball Grid Array (FBGA) 9x12mm.
 - □ mDOC H3 4Gb/8Gb/16Gb 115ball Fine-Pitch Ball Grid Array (FBGA) 12x18mm

msystems

- □ Ball to ball compatible with mDOC G3/G4/H1 product families.
- Enhanced performance by implementation of:
 - □ Multi-plane operations
 - □ DMA support
 - □ Burst operation
 - □ Dual Data RAM buffering
 - □ Read/Write Cache
- Unrivaled data integrity with a robust 6 bit Error Detection Code/Error Correction Code (EDC/ECC) specifically tailored for the most advanced flash technology.
- Maximized flash endurance with TrueFFS advanced flash management software.
- Reduced complexity for the host system by moving flash management functionality to the device.
- Plug & Play integration with the host system, due to embedding TrueFFS within the device itself.
- Support for major mobile operating systems (OSs), including Symbian OS, Windows Mobile, Windows CE, Linux and more.
- Compatibility with major mobile CPUs
- Performance:
 - ☐ Sustained write: 5-7 MB/sec. ☐ Sustained read: 15-25 MB/sec.

PROTECTION & SECURITY-ENABLING

- 16-byte Unique Identification (UID) number.
- 32-bit Random number Generator (RNG).
- 10 configurable protected partitions for data and code:
 - □ Write protected
 - □ Read and Write protected
 - ☐ One Time Programmable (OTP)
 - □ Protection key and LOCK# signal

- ☐ Sticky Lock (SLOCK) to lock boot partition
- Protected Bad Block Table.

RELIABILITY AND DATA INTEGRITY

- Hardware on-the-fly 6-bit Error Detection Code/Error Correction Code (EDC/ECC), based on a BCH algorithm, tailored for the most advanced flash technology.
- Guaranteed data integrity after power failure.
- Transparent bad-block management.
- Dynamic and static wear-leveling.

BOOT CAPABILITY

- 32KB Programmable Boot Block with XIP capability to replace boot ROM or NOR.
- 128KB Virtual RAM IPL
- 254KB Paged RAM IPL
- Boot Agent for automatic download of boot code to the Programmable Boot Block.
- Asynchronous Boot mode to enable ARMbased CPUs, e.g. TI OMAP, Intel PXAxxx, to boot without the need for external glue logic.
- Exceptional boot performance with Burst operation and DMA support enhanced by external clock.

HARDWARE COMPATIBILITY

- Configurable interface: simple SRAM-like or multiplexed address/data interface.
- CPU compatibility, including:
 - □ ARM-based CPUs
 - ☐ Texas Instruments OMAP, DBB
 - □ Intel PXAxxx family
 - □ Infineon xGold family
 - ☐ Analog Devices (ADI) digital Baseband devices

- ☐ Freescale i.MXxx Application processors and i.xx digital Baseband devices
- □ Zoran ER4525
- □ Renesas SH mobile
- □ EMP platforms
- □ Qualcomm MSMxxxx
- ☐ Hitachi SuperHTM SH-x
- Supports 16 and 32-bit architectures

EMBEDDED TRUEFFS SOFTWARE

TrueFFS (True Flash File System) is mystems' acclaimed and field proven patented flash management software. TrueFFS is embedded within the mDOC H3 device, providing full Block Device functionality to the Operating System (OS) file system via either TrueFFS 7.1 (for supporting both earlier mDOC products and mDOC H3) or the mDOC driver. TrueFFS allows for mDOC H3 to appear to the OS as a regular hard drive, while at the same time transparently providing robust flash media management.

- DOC driver provides full block device emulation for transparent file system management
- Disk-like interface
- Dynamic virtual mapping
- Automatic bad block management
- Dynamic and static wear-leveling
- Programming, duplicating and testing tools available in source code
 - □ Vxworks
 - □ Integrity
 - \square ONX
- DOC driver Software Development Kit (SDK) for quick and easy support for proprietary OSs, or OS-less environment.

CAPACITY AND PACKAGING

- 1Gb (128MB) 16Gb (2GB) capacity, with device cascading option for up to two devices (32Gb).
- FBGA package: 115 balls, 9x12x1.2 mm (width x length x height)
- FBGA package: 115 balls, 12x18x1.4 mm (width x length x height)
- Ball-out compatible with mDOC G3, G4 and H1 products: Refer to Migration Guide mDOC G3-P3 G3P3-LP G4 H1 to mDOC H3 for further details.

OPERATING ENVIRONMENT

- Wide OS support, including:
 - □ Symbian OS
 - □ Windows Mobile
 - □ Windows CE
 - □ Linux
 - □ Nucleus
 - □ OSE
 - □ PalmOS

REVISION HISTORY

Doc. No	Revision	Date	Description	Reference
92-DS-1205-10	0.1	January 2006	Preliminary version	-
	0.2	June 2006	RSRVD balls left floating changed from a recommendation to a requirement	Section 2
			Standard I/F Ball H9 changed from RSRVD to VSS	Section 2.2
			Ballout change – Some NC balls removed, resulting in 115 balls for all products	Section 2.2
			Ball H2 changed from DPD to A0	Sections 2.2 and 2.3
			Details on internal pull up and pull down resistors added	Sections 2.2.2 and 2.3.2
			DPD signal removed (replaced with A0, which should be connected to CPU A0 or to VSS)	Sections 2, 2.2.2 and 2.3.2
			Balls G1,H1,J1,K1 marked as reserved	Sections 2.2.2
			Ball G4 changed from RSRVD to VCCQ	and 2.3.2
			Ball D9 changed from NC to RSRVD	Section 2.3.2
			Modes of operation diagram updated	Section 5
			"Normal mode" name changed to "Turbo mode"	Section 5
			8KB address space settings added	Section 6.5
			Added register addresses for 8KB address space	Section 7
			Burst mode can only be used in conjunction with mDOC H3 DMA functionality	Section 9.8.2
			Operating Conditions updated	Section 10.2.4
			Asynchronous boot mode timing diagram added	Section 10.3.1
			Multiplexed timing updated	Section 10.3.3
				Section 10.3.4
			Power up timing updated	Section 10.3.10
			Mechanical drawing updated	Section 10.4.2
			(removed balls from 12x18mm drawing)	
			Ordering information modified	Section 11

TABLE OF CONTENTS

1.	Intro	oduction	10
2.	Prod	duct Overview	11
	2.1	Product Description	11
	2.2	Standard Interface	13
		2.2.1 9x12/12x18 FBGA Ball Diagrams	13
		2.2.2 9x12/12x18 FBGA Signal Description	15
		2.2.3 System Interface	18
	2.3	Multiplexed Interface	19
		2.3.1 9x12/12x18 FBGA Ball Diagram	19
		2.3.2 9x12/12x18 FBGA Signal Description	21
		2.3.3 System Interface	24
3.	The	ory of Operation	25
	3.1	Overview	25
	3.2	Host Interface	26
		3.2.1 Standard (NOR-Like) Interface	26
		3.2.2 Multiplexed Interface	26
		3.2.3 Serial Interface	27
	3.3	Host Agent	27
		3.3.1 Host Protocol	27
		3.3.2 Boot Block (XIP)	27
	3.4	Boot Agent	27
	3.5	Error Detection Code / Error Correction Code (EDC/ECC)	28
	3.6	Block Device Management	28
4.	Data	Protection and Security-Enabling features	29
		4.1.1 Read/Write-Protected partitions	29
		4.1.2 LOCK# signal	29
		4.1.3 Sticky Lock (SLOCK)	29
		4.1.4 Unique Identification (UID) Number	29
		4.1.5 One-Time Programmable (OTP) Partitions	30
5.	mDO	DC H3 Modes of Operation	31
	5.1	Reset State	32
	5.2	Turbo Mode	32
	5.3	Power Save Mode	32
	5.4	Standby Mode	32

msystems

	5.5	Deep l	Power-Down Mode	32
6.	Emb	edded	TrueFFS Technology	34
	6.1	Gener	al Description	34
	6.2	Opera	ting System Support	34
	6.3	DOC [Oriver Software Development Kit (SDK)	34
		6.3.1	File Management	
		6.3.2	Bad-Block Management	
		6.3.3	Wear-Leveling	35
		6.3.4	Power Failure Management	36
		6.3.5	Error Detection/Correction	36
		6.3.6	Special Features through I/O Control (IOCTL) Mechanism	36
		6.3.7	Compatibility	36
	6.4	128KE	3 Memory Window	38
	6.5	8KB M	lemory Window	39
7.	mDC	OC H3 F	Registers	40
	7.1	Definit	tion of Terms	40
	7.2	Reset	Values	41
	7.3	Regist	ters Description	41
		7.3.1	Paged RAM Command Register	
		7.3.2	Paged RAM Select Register	
		7.3.3	Paged RAM Unique ID Download Register	42
		7.3.4	Device Status Register	42
		7.3.5	Device Command Register	43
		7.3.6	Device Control Register	43
		7.3.7	Chip Identification (ID) Register [0:1]	44
		7.3.8	Burst Mode Control Registers (Read & Write)	44
		7.3.9	Burst Write Mode Exit Register	45
			Download Control Register	
			IPL Control Register	
			Warm Boot Register	
			Power-Down Register	
			Power Mode Register	
			DMA Control Register	
			DMA Negation Register	
			Software Lock Register	
			Endian Control Register	
_	_		Version Register	
8.	Boo	ting fro	om mDOC H3	52

msystems

	8.1	Introdu	ction	52
		8.1.1	Asynchronous Boot Mode	53
		8.1.2	Virtual RAM Boot	53
		8.1.3	Paged RAM Boot	54
9.	Desi	gn Con	siderations	55
	9.1	Genera	al Guidelines	55
	9.2	Config	uration and GPIO Interface	55
	9.3	Standa	ard NOR-Like Interface	56
	9.4	Multiple	exed Interface	57
	9.5	H3 Pov	wer Supply Connectivity	58
	9.6	Conne	cting Control Signals	58
		9.6.1	Standard Interface	58
		9.6.2	Multiplexed Interface	59
	9.7	Implem	nenting the Interrupt Mechanism	59
		9.7.1	Hardware Configuration	59
		9.7.2	Software Configuration	59
	9.8	DMA a	nd Burst Operation	60
		9.8.1	DMA Operation	60
		9.8.2	Burst Operation	61
	9.9	Device	Cascading	62
	9.10	Platfori	m-Specific Issues	63
		9.10.1	Wait State	63
		9.10.2	Big and Little Endian Systems	63
		9.10.3	Busy Signal	63
		9.10.4	Working with 16/32-Bit Systems	64
	9.11	Design	Environment	65
10	. Prod	luct Spe	ecifications	66
	10.1	Enviror	nmental Specifications	66
		10.1.1	Operating Temperature	66
		10.1.2	Thermal Characteristics	66
		10.1.3	Humidity	66
	10.2	Electric	cal Specifications	66
		10.2.1	Absolute Maximum Ratings	66
		10.2.2	Capacitance	66
		10.2.3	DC Characteristics	67
		10.2.4	Operating Conditions	69
	10 3	Timina	Specifications	71

	10.3.1	Standard Asynchronous Read Timing	7
	10.3.2	Standard Asynchronous Write Timing	72
	10.3.3	Multiplexed Asynchronous Read Timing	73
	10.3.4	Multiplexed Asynchronous Write Timing	74
	10.3.5	Standard Burst Read Timing	75
	10.3.6	Standard Burst Write Timing	76
	10.3.7	Multiplexed Burst Read Timing	77
	10.3.8	DMA Request Timing Diagram	78
	10.3.9	SPI Timing	79
		O Power-Up Timing	
10.4	Mecha	anical Dimensions	82
	10.4.1	mDOC H3 1Gb (128MB)/2Gb (256MB)	82
	10.4.2	mDOC H3 4Gb (512MB)/8Gb (1GB)/ 16Gb (2GB)	83
11. Orde	erina In	formation	84

1. Introduction

This data sheet includes the following sections:

Section 1: Introduction and overview of data sheet contents

Section 2: Product overview, including a brief product description, ball diagrams and signal

descriptions

Section 3: Theory of operation for the major building blocks

Section 4: Data protection and security enabling features overview

Section 5: Detailed description of modes of operation, including power failure management

and 128KByte memory window

Section 6: Embedded TrueFFS Technology overview

Section 7: mDOC H3 register descriptions

Section 8: Overview of how to boot from mDOC H3

Section 9: Hardware and software design considerations

Section 10: Environmental, electrical, timing and product specifications

Section 11: Information on ordering mDOC H3

For additional information on msystems' flash disk products, please contact one of the offices listed on the back page.

2. PRODUCT OVERVIEW

2.1 Product Description

mDOC H3 is the latest addition to msystems' mDOC product family. mDOC H3, packed in a small FBGA package and offering densities ranging from 1Gb (128MB) to 16Gb (2GB), is a hybrid device with an embedded thin flash controller and high capacity flash memory. It uses the most advanced Flash technologies, enhanced by msystems' proprietary TrueFFS embedded flash management software.

All mDOC H3 devices are ball to ball compatible. The replacement of one mDOC H3 device with another of a newer generation requires virtually no changes to the host. This makes mDOC H3 the perfect solution for platforms and reference designs, as it allows for the utilization of more advanced NAND Flash technology and new mDOC functionality with minimal integration efforts.

mDOC H3 has a 32KB Programmable Boot Block. This block provides eXecute In Place (XIP) functionality, enabling mDOC H3 to replace the boot device and to function as the only non-volatile memory device on-board. Eliminating the need for an additional boot device reduces hardware expenditures, board real estate, programming time, and logistics. The Paged RAM IPL feature separates the Boot Block into sections: The first section provides constant data, while the other sections (up to 254KB) can be downloaded with flash data. One application of this feature is to support processors' secure boot requirements. The Virtual RAM IPL utilizes the 32KB physical IPL SRAM to provide XIP access to the full memory window size (either 8KB or 128KB).

msystems' proprietary TrueFFS flash management software overcomes NAND-related error patterns by using a robust error detection and correction (EDC/ECC) mechanism. Furthermore, it provides performance enhancements such as multi-plane operations, DMA support, Burst operation and Dual Data RAM buffering.

The new generation of patented flash management software, Embedded TrueFFS, is run on the embedded thin controller of the mDOC H3 device, instead of on the host. This results in improvements in performance, ease of integration and overall utilization of latest NAND technologies. Embedded TrueFFS guarantees high reliability and isolates all the complexity of flash management from the host SW.

Embedded TrueFFS enables mDOC H3 to fully emulate a hard disk to the host processor, enabling read/write operations that are identical to a standard, sector-based hard drive. In addition, Embedded TrueFFS employs patented methods, such as virtual mapping, dynamic and static wear-leveling, and automatic block management to ensure high data reliability and maximize flash life expectancy. mDOC H3 extended features are enabled by a small driver that runs on the host side, called DOC driver. DOC driver provides the host O/S with a standard Block Device interface, together with APIs for mDOC H3 extended features. The combination of Embedded TrueFFS and DOC driver practically enables Plug & Play integration.

mDOC H3 offers extended content protection and security-enabling features. Up to 10 write protected, read-and-write protected, or One Time Programmable (OTP) partitions can be

configured independently for maximum design flexibility. A 16-byte Unique ID (UID) identifies each device, eliminating the need for a separate ID device on the motherboard. A new 32-bit Random Number Generator (RNG) is also available. The RNG, in conjunction with the embedded SW enables secured and authenticated communication with the Host CPU. The combination of these features enables mDOC H3 to implement better security schemes to protect the code and data it stores.

mDOC H3 can be configured to work with either standard interface or multiplexed (MUX) interface. Using multiplexed interface where data and address lines are multiplexed reduces the number of signals required to connect mDOC H3 to the CPU.

The combination of unique H3 design, latest NAND technology and Embedded TrueFFS results in a low-cost, minimal-sized flash disk that achieves unsurpassed reliability levels, enhanced performance and ease of integration.

This breakthrough in performance, size, cost and design makes mDOC H3 the ideal solution for mobile handsets and consumer electronics manufacturers who require easy integration, fast time to market, high-capacity, small size, high-performance and, above all, high-reliability storage to enable multimedia driven applications such as music, photo, video, TV, GPS, games, email, office and other applications.

mDOC H3 offers advanced power consumption management by means of optional power consumption modes. The power consumption modes of the mDOC H3 device are designed to be directly accessed and controlled by the chipset and OS to ensure optimal battery life in mobile devices.

mDOC H3 can be placed in any of the following four power consumption modes:

- Turbo mode While in Turbo mode, device internal clocks are optimized for maximal performance.
- Power Save mode While in Power Save mode, device internal clocks are optimized to balance between device performance and power consumption.
- Standby mode While in Standby mode, the clock of most internal cores is either disconnected or reduced to a minimum. There is no wake-up time penalty.
- Deep Power Down (DPD) mode While in Deep Power-Down mode, device quiescent power dissipation is reduced by disabling internal high current consumers (e.g. flash, voltage regulators, input buffers, oscillator etc.)

mDOC H3 power management mode flexibility allows for the system designers to substantially reduce the power consumption of the mDOC device, based on the requirements of the mobile device, to effectively and considerably prolong battery life.

2.2 Standard Interface

2.2.1 9x12/12x18 FBGA Ball Diagrams

Figure 2 shows the mDOC H3 9x12mm/12x18mm 115 ball standard interface ball diagram.

To ensure proper device functionality, balls marked RSRVD are reserved for future use and should be connected as described in Table 1, section 2.2.2.

Note: mDOC H3 is designed as a ball to ball compatible with mDOC G3, G4 and H1 products, assuming that the latter were integrated according to the migration guide guidelines. Refer to *Migration Guide mDOC G3-P3 G3P3-LP G4 H1 to mDOC H3*, for further information.

9x12/12x18 FBGA Package 2 3 6 1 5 7 8 9 10 Α NC NC NC NC В NC NC NC С RSRVD RSRVD RSRVD RSRVD RSRVD RSRVD RSRVD RSRVD RSRVD D RSRVD RSRVD VSS VCC2 WE# RSRVD RSRVD Ε GPIO_TIMER A6 A14 RSTIN# C+ VCC1 RSRVD A15 F RSRVD A2 A5 A13 BUSY# C-A9 LOCK# RSRVD A16 RSRVD Α1 A4 VCCQ NC NC A10 ID0 IRQ# SCS# G VSS RSRVD D1 NC NC D6 DMARQ# VSS so Н RSRVD CE# OE# D9 D3 D4 D13 D15 WARM_RST# SI J RSRVD RSRVD D0 D10 VCC VCCQ D12 D7 VSS SCLK Κ RSRVD RSRVD D2 D11 D5 D14 RSRVD RSRVD D8 CLK L RSRVD Μ RSRVD NC NC NC Ν RSRVD NC Ρ NC NC

Figure 2: Standard Interface Ball Diagram for 9x12 / 12x18 FBGA - Top View

2.2.2 9x12/12x18 FBGA Signal Description

mDOC H3 9x12mm and 12x18mm (115 ball) package ball designations are listed in the signal descriptions, presented in logic groups, in Table 1.

Table 1: Standard Interface Signal Description

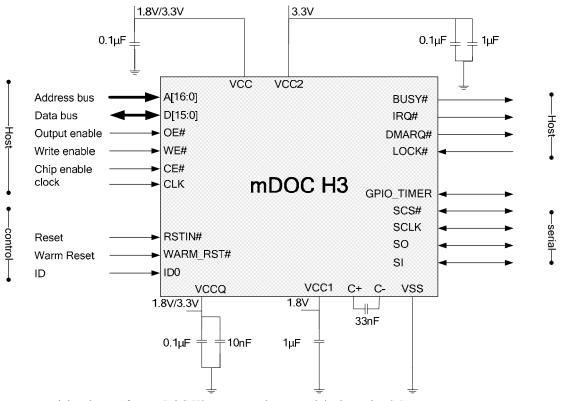
0:	D-II N	Signal Type ¹	Benediction	Signal			
Signal	Ball No.		Description	Direction			
	System Interface						
4540 453	F10, E10			Input			
A[16:15]	E4, F4						
A[14:13]	E8, D8	A[12:0] ST					
A[12:11] A[10:8]	G7, F7, D7 D3, E3, F3,	A[16:13]IN/PD	Address bus.				
A[7:4]	G3						
A[3:0]	E2, F2, G2, H2						
D[7:6]	K8, H7	ST		Input/output			
D[5:3]	L7, J6, J5		Data bus, low byte.				
D[2:0]	L4, H4, K3						
D[15:14]	J8, L8	ST		Input/output			
D[13:12]	J7, K7 L5, K4, J4,		Data bus, high byte.				
D[11:8]	L3						
CE#	J2	ST	Chip Enable, active low.	Input			
OE#	J3	ST	Output Enable, active low.	Input			
WE#	D6	ST	Write Enable, active low	Input			
		(Configuration				
GPIO_TIMER	E1	ST/PU	GPIO or configurable timer.	Input/output			
		PD	Identification. Configuration control to support	Input			
ID0	G8		up to two chips cascaded in the same memory window.				
100		G8	Go		Chip 1: ID0 = VSS		
			Chip 2: ID0 = VCCQ				
		ST	Lock, active low. When active, provides full	Input			
LOCK#	F8		hardware data protection of selected partitions.				
Control							
		ST/PU	Warm reset input, used for triggering device	Input			
WARM_RST#	J9		warm-reset. Active low. If not used may be left floating.				
		CMOS 3-STATE	Busy. Active low. Indicates that mDOC is	Output			
BUSY#	F5		initializing and should not be accessed	1 1			
RSTIN#	E5	ST/PU	Reset, active low.	input			

Signal	Ball No.	Signal Type ¹	Description	Signal Direction
CLK	L6	ST	External clock input used for burst mode data transfers. If not used may be left floating.	Input
DMARQ#	Н8	CMOS 3-STATE	DMA request. If not used may be left floating.	Output
IRQ#	G9	CMOS 3-STATE	Interrupt Request. Active low. If not used may be left floating.	Output
		S	erial Interface	
SCS#	G10	ST/PU/CMOS 3- STATE	Serial Interface chip select. Active low. If not used may be left floating.	Input/Output
SO	H10	ST/PU/CMOS 3- STATE	Serial Interface data out (In Serial slave mode) ² . If not used may be left floating.	Output/Input
SI	J10	ST/PU/CMOS 3- STATE	Serial Interface data in (In serial slave mode) ² . If not used may be left floating.	Input/Output
SCLK	K10	ST/PU/CMOS 3- STATE	Serial Interface clock. If not used may be left floating.	Input/Output
			Power	
VCC2	D5	-	Internal supply. Requires a 1µF and 0.1 µF capacitor.	Supply
VCC1	E7	-	Internal supply. Requires a 1µF capacitor.	Supply
VCCQ	K6, G4	-	I/O power supply. Requires a 10 nF and 0.1 µF capacitor.	Supply
VCC	K5	-	Device supply. Requires a 0.1 µF capacitor.	Supply
VSS	D4, H3, H9, K9	-	Ground. All VSS balls must be connected.	Supply
C+	E6	-	C1 - 33nF capacitor positive terminal ³ .	Supply
C-	F6	-	C1 - 33nF capacitor negative terminal ³ .	Supply

Signal	Ball No.	Signal Type ¹	Description	Signal Direction
	•		Reserved	,
RSRVD	C2, C3, C4, C5, C6, C7, C8, C9, C10, D1, D2, D9, D10, E9, F1, F9, G1, H1, J1, K1, K2, L2, L9, L10, M2, M3, M4, M5, M6,M7, M8, M9, M10	-	All reserved signals are not connected internally, and if not identified in this document then it is recommended to leave them floating to guarantee forward compatibility with future products. They should not be connected to arbitrary signals, and must not be connected to GND	
	P1	ST/PU	Test Data In (JTAG). Used for dedicated developer product only ⁴ .	Input
	M1	CMOS output	Test Data Out (JTAG). Used for dedicated developer product only ⁴ .	Output
	L1	ST/PU	Test Mode Select (JTAG) Used for dedicated developer product only ⁴ .	Input
	N1	ST/PU	Test Clock (JTAG). Used for dedicated developer product only ⁴ .	Input
			Mechanical	
NC	A1, A2, A9, A10, B1, B2, B9, B10, , G5, G6, H5, H6, N2, N9, N10, P2, P9, P10	-	Not Connected.	

The following abbreviations are used: ST - Schmidt Trigger input. IN/PD – CMOS input with internal pull down resistor (77KΩ to 312KΩ; 135KΩ typical), which is enabled only when 8KB memory window is in use, ST/PU - Schmitt Trigger input with internal pull up resistor (95KΩ to 261 KΩ; 149 KΩ typical).

^{2.} When mDOC H3 is used as a Master device, SO is used for Serial Interface Data In, and SI is used for Serial Interface Data Out.


^{3.} The 33 nF capacitor is required only for 1.8V Core and 1.8V I/O configuration. Please see section 9.5 for further details.

^{4.} The RSRVD JTAG balls will only be enabled on special versions of the mDOC H3 devices that will be used for debugging severe system problems. In order to support this feature, the JTAG balls should be brought out to a separate header or test points. The JTAG RSRVD balls must not be connected to the JTAG scan chain that is used for the rest of the PCB. If not used they should be left floating.

2.2.3 System Interface

See Figure 3 for a simplified I/O diagram for a standard interface of mDOC H3.

For power connectivity please refer to mDOC H3 power supply connectivity in section 9.5.

Figure 3: Standard Interface Simplified I/O Diagram

2.3 Multiplexed Interface

2.3.1 9x12/12x18 FBGA Ball Diagram

Figure 4 shows the mDOC H3 9x12mm/12x18mm115 ball multiplexed interface ball diagram. To ensure proper device functionality, balls marked RSRVD are reserved for future use and should be connected as described in Table 2, section 2.3.2.

mDOC H3 designed as a ball to ball compatible with mDOC G3, G4 and H1 products, assuming that the latter were integrated according to the migration guide guidelines. Refer to *Migration Guide mDOC G3-P3 G3P3-LP G4 and H1 to mDOC H3*, for further information.

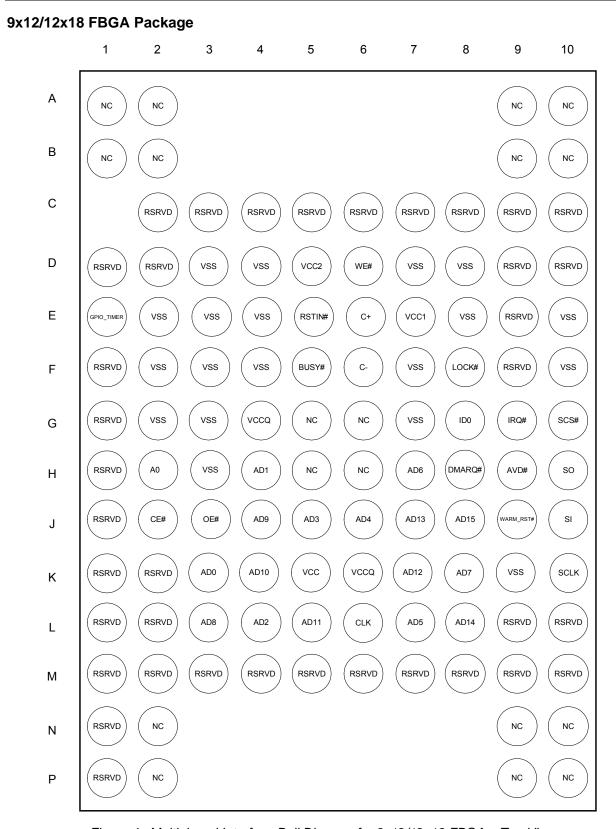


Figure 4: Multiplexed Interface Ball Diagram for 9x12/12x18 FBGA - Top View

2.3.2 9x12/12x18 FBGA Signal Description

mDOC H3 9x12 / 12x18 FBGA related ball designations are listed in the signal descriptions, presented in logic groups, in Table 2.

Table 2: Signal Descriptions for Multiplexed Interface

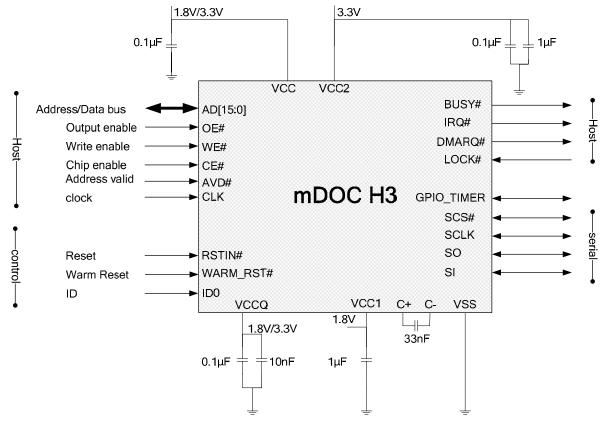
Signal	Ball No.	Signal Type ¹	Description	Signal Direction
	<u>, </u>	;	System Interface	
AD[15:12] AD[11:8] AD[7:4] AD[3:0]	J8, L8, J7, K7 L5, K4, J4, L3 K8, H7, L7,J6 J5, L4, H4, K3	ST	Multiplexed bus. Address and data signals.	Input
CE#	J2	ST	Chip Enable, active low.	Input
OE#	J3	ST	Output Enable, active low.	Input
WE#	D6	ST	Write Enable, active low	Input
			Configuration	
GPIO_TIMER	E1	ST/PU	GPIO or configurable timer.	Input/output
AVD#	H9	ST/PU	Address Valid strobe. Set multiplexed interface.	Input
ID0	G8	PD	Identification. Configuration control to support up to two chips cascaded in the same memory window. Chip 1: ID0 = VSS	Input
LOCK#	F8	ST	Chip 2: ID0 = VCCQ Lock. Active low. When active, provides full hardware data protection of selected partitions.	Input
	ļ		Control	
WARM_RST#	J9	ST/PU	Warm reset input, used for triggering device warm-reset, Active low. If not used may be left floating.	Input
BUSY#	F5	CMOS 3- STATE	Busy. Active low. Indicates that mDOC is initializing and should not be accessed.	Output
RSTIN#	E5	ST/PU	Reset, active low.	Input
CLK	L6	ST	External clock input used for burst mode data transfers. If not used may be left floating.	Input
DMARQ#	H8	CMOS 3- STATE	DMA request. If not used may be left floating.	Output
IRQ#	G9	CMOS 3-	Interrupt Request. Active low. If not used may	Output

Signal	Ball No.	Signal Type ¹	Description	Signal Direction
		STATE	be left floating.	
	•		Serial Interface	
SCS#	G10	ST/PU/CMOS 3-STATE	Serial Interface chip select. Active low. If not used may be left floating.	Input/Output
SO	H10	ST/PU/CMOS 3-STATE	Serial Interface data out (In Serial slave mode) ² . If not used may be left floating.	Output/Input
SI	J10	ST/PU/CMOS 3-STATE	Serial Interface data in (In Serial slave mode) ² . If not used may be left floating.	Input/Output
SCLK	K10	ST/PU/CMOS 3-STATE	Serial Interface clock. If not used may be left floating.	Input/Output
			Power	
VCC2	D5	-	Internal supply. Requires a 1µF and 0.1 µF capacitor.	Supply
VCC1	E7	-	Internal supply. Requires a 1µF capacitor.	Supply
VCCQ	K6, G4	-	I/O power supply. Requires a 10 nF and 0.1 μ F capacitor.	Supply
VCC	K5	-	Device supply. Requires a 0.1 µF capacitor.	Supply
VSS	D3, D4, D7, D8, E2, E3, E4 E8, E10, F2, F3, F4, F7, F10, G2, G3, G7, H3, K9,	-	Ground. All VSS balls must be connected.	Supply
C+	E6	-	C1 - 33nF capacitor positive terminal ³ .	Supply
C-	F6	-	C1 - 33nF capacitor negative terminal ³ .	Supply

Signal	Ball No.	Signal Type ¹	Description	Signal Direction			
	Reserved						
RSRVD	C2, C3, C4, C5, C6, C7, C8, C9, C10, D1, D2, D9, D10, E9, F1, F9, G1, H1, J1, K1, K2, L2, L9, L10, M2, M3, M4, M5, M6,M7, M8, M9, M10	-	All reserved signals are not connected internally, and if not identified in this document then it is recommended to leave them floating to guarantee forward compatibility with future products. They should not be connected to arbitrary signals.				
	P1	ST/PU	Test Data In (JTAG).	Input			
			Used for dedicated developer product only ⁴ .				
	M1	CMOS output	Test Data Out (JTAG).	Output			
			Used for dedicated developer product only ⁴ .				
	L1	ST/PU	Test Mode Select (JTAG)	Input			
			Used for dedicated developer product only ⁴ .				
	N1	ST/PU	Test Clock (JTAG).	Input			
	INI		Used for dedicated developer product only ⁴ .				
	Mechanical						
NC	A1, A2, A9, A10, B1, B2, B9, B10, G5, G6, H5, H6, N2, N9, N10, P2, P9, P10	-	Not Connected.				

The following abbreviations are used: ST - Schmidt Trigger input. IN/PD - CMOS input with internal pull down resistor (77ΚΩ to 312ΚΩ; 135ΚΩ typical), which is enabled only when the 8KB memory window is in use, ST/PU - Schmitt Trigger input with internal pull up resistor (95ΚΩ to 261 ΚΩ; 149 ΚΩ typical).

^{2.} When mDOC H3 is used as a Master device, SO is used for Serial Interface Data In, and SI used for Serial Interface Data Out.


^{3.} The 33 nF capacitor is required only for 1.8V Core and 1.8V I/O configuration. Please see section 9.5 for further details.

^{4.} The RSRVD JTAG balls will only be enabled on special versions of the mDOC H3 devices that will be used for debugging severe system problems. In order to support this feature, the JTAG balls should be brought out to a separate header or test points. The JTAG RSRVD balls must not be connected to the JTAG scan chain that is used for the rest of the PCB. If not used they should be left floating.

2.3.3 System Interface

See Figure 5 for a simplified I/O diagram of multiplexed interface mDOC H3.

For power connectivity please refer to mDOC H3 power supply connectivity in section 9.5.

Figure 5: Multiplexed Interface Simplified I/O Diagram

3. THEORY OF OPERATION

3.1 Overview

mDOC H3 consists of the following major functional blocks, as shown in Figure 6.

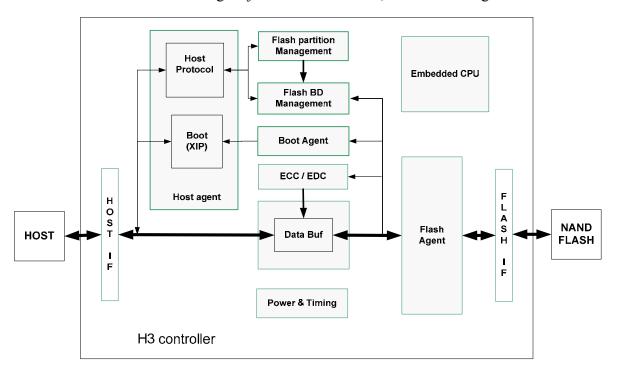


Figure 6: Simplified Block Diagram

These components are described briefly below and in more detail in the following sections.

- **Host IF** Host physical interface block. Composed of the following interfaces: Standard, Multiplexed, and Serial.
- **Host Agent** Logical host interface supporting the host protocol and Programmable Boot Block with XIP functionality.
- Flash Partition Management High level management of the Flash media, managing flash logical partitions, and their attributes.
- **Flash BD Management** Management of the Flash media at a Block Device level, primarily performing logical to physical address translation.
- **Boot Agent** Management of host boot sequence Loading of Boot code from flash media upon power up.
- **ECC / EDC -** Error Detection and Error Correction Codes (EDC/ECC) On-the-fly Flash error handling.
- **Data Buffer** 4KB DPRAM memory, used as a pipeline buffer, for enhanced data transfer rate.

- **Flash Agent** Provides High level Flash management functions and sequences for Flash control and error condition handling.
- **Flash IF** Physical interface to the Flash Media.
- **Power and Timing** Analog and clock circuits to provide power and timing for the H3 controller and flash.
- **Embedded CPU** Runs Embedded TrueFFS SW and mDOC H3 Controller operating SW.

3.2 Host Interface

3.2.1 Standard (NOR-Like) Interface

The host interface block provides an easy-to-integrate NOR-like (also SRAM and EEPROM-like) interface to mDOC H3, enabling various CPU interfaces, such as a local bus, ISA bus, NOR interface, SRAM interface, EEPROM interface or any other compatible interface. In addition, the EEPROM-like interface enables direct access to the Programmable Boot Block to permit XIP (Execute-In-Place) functionality during system initialization.

A1-A16 address lines enable access to the mDOC H3 128KB memory window. When migrating from mDOC G3/G4/H1 without changing the PCB, thus using only A1-A12 address lines, mDOC H3 exports 8KB memory window, like in mDOC G3/G4 and H1.

The Chip Enable (CE#), Write Enable (WE#) and Output Enable (OE#) signals trigger read and write cycles. A write cycle occurs while both the CE# and the WE# inputs are asserted. Similarly, a read cycle occurs while both the CE# and OE# inputs are asserted. Note that mDOC H3 does not require a clock signal. It features a unique analog static design, optimized for minimal power consumption. The CE#, WE# and OE# signals trigger the controller (e.g., system interface block, bus control and data pipeline) and flash access.

The Reset-In (RSTIN#) and Busy (BUSY#) control signals are used in the reset phase. WARM_RST# signal (warm reset) is used to reset the Host IF and enter a predefined reset scenario of mDOC H3.

The Interrupt Request (IRQ#) signal is used to indicate completion of operations. Using this signal frees the CPU to run other tasks, continuing read/write operations with mDOC H3 only after the IRQ# signal has been asserted and an interrupt handling routine (implemented in the OS) has been called to return control to the DOC driver.

The DMARQ# output is used to control DMA operations, and the CLK input is used to support Burst operation when reading flash data. See Section 10.3 for further information.

3.2.2 Multiplexed Interface

In this configuration, the address and data signals are multiplexed. The AVD# input is driven by the host AVD# signal, and the D[15:0] balls, used for both address inputs and data, are connected to the host AD[15:0] bus. While AVD# is asserted, the host drives AD[15:0] with bits [16:1] of the address.

This interface is automatically used when a falling edge is detected on AVD#. This edge must occur after RSTIN# is de-asserted and before the first read or write cycle to the controller.

3.2.3 Serial Interface

The Serial interface (SPI) provides mDOC H3 a secondary interface with debug and programming capabilities. mDOC H3 SPI Interface is configured as Slave. All four combinations of clock phase (CPHA) and clock polarity (CPOL) defined by the SPI specification are supported.

The Serial interface supports two usage scenarios:

- 1. Debug port: Allowing the host with an SPI interface to read debug messages.
- 2. Format and Program port: Allowing a programmer to use this port in order to format and program the device.

The serial protocol debug port provides a means for the serial interface (SPI Slave) to queue and transmit debug messages to a host which supports an SPI interface.

All transfers are performed in multiples of 8 bits, with the MSB of each byte transmitted first.

3.3 Host Agent

3.3.1 Host Protocol

Block of registers and logic required for implementing block device operations over the host interface. This block implements a set of complex transactions required for operating the mDOC H3 device. These transactions include data storage operations as well as device configuration and management.

3.3.2 Boot Block (XIP)

The Programmable Boot Block with XIP functionality enables mDOC H3 to act as a boot device (in addition to performing flash disk data storage functions). This eliminates the need for expensive, legacy NOR flash or any other boot device on the motherboard.

The Programmable Boot Block is 32KB in size. The Boot Agent, described in the next section, expands the functionality of this block by copying the boot code from the flash into the boot block.

3.4 Boot Agent

Upon power-up or when the RSTIN# signal is de-asserted, the Boot Agent automatically downloads the Initial Program Loader (IPL) to the Programmable Boot Block. The IPL contains the code for starting the Host boot process. The download process is quick, and is designed so that when the CPU accesses mDOC H3 for code execution, the IPL code is already located in the Programmable Boot Block. During the download process, mDOC H3 does not respond to read or write accesses. Host systems must therefore observe the requirements described in Section 10.3.10.

During the download process, mDOC H3 asserts the BUSY# signal to indicate to the system that it is not yet ready to be accessed. Once BUSY# is de-asserted, the system can access mDOC H3.

Note that after IPL is loaded and BUSY# is de-asserted, the Boot Agent continues to download the embedded TrueFFS from Flash to the mDOC H3 internal RAM, and then executes it. Downloading the embedded TrueFFS is done in parallel to the host system accessing the IPL code. During the time between BUSY# signal de-assertion and Embedded TrueFFS load

completion, mDOC H3 will respond only to accesses to the XIP Boot Block (including Paged or Virtual RAM accesses) in order to facilitate completion of the IPL execution.

Once Embedded TrueFFS is loaded, executed and completed its media mount process, mDOC H3 is ready to be used as a fully functional storage device.

3.5 Error Detection Code / Error Correction Code (EDC/ECC)

Since NAND-based flash is prone to errors, it requires unique error-handling capabilities to ensure required reliability. msystems' TrueFFS technology, embedded within mDOC H3, includes a 6-bit Error Detection Code / Error Correction Code (EDC/ECC), based on the Bose, Chaudhuri and Hocquenghem (BCH) algorithm. Both EDC and ECC are implemented in hardware to optimize performance.

Each time a 512-byte sector is written, additional parity bits are calculated and written to the flash. Each time data is read from the flash, the parity bits are read and used for calculating error locations.

The BCH algorithm can detect and correct 6 errors per 512 Bytes, and in case of higher error rates, will identify and notify a corrupted sector in very high probability. It ensures that the minimal amount of code is used for detection and correction to deliver the required reliability without degrading performance.

3.6 Block Device Management

Block device management is performed by an embedded SW module, responsible for execution of all Block Device operations, such as address calculation, erase, read and writes operations etc. This module translates these operations from virtual media terms (i.e. sector addresses) to flash media terms (i.e. flash planes, blocks and pages).

These Block Device operations are typically initiated by the host File System, translated by the DOC Driver and sent to the device over the host interface. The Host Agent (above) is responsible for capture and transfer to the Block Device management.

4. Data Protection and Security-Enabling features

4.1.1 Read/Write-Protected partitions

Data and code protection is implemented on a per-partition basis. The user can configure each partition as read protected, write protected, or read and write protected.

A protected partition may be protected by either/both of these mechanisms:

- Up to 128-byte protection key
- Hard-wired LOCK# signal
- Sticky lock (SLOCK)

In order to set or remove read/write protection, the protection key must be used as follows:

- Insert the protection key to remove read/write protection
- Remove the protection key to set read/write protection

The only way to read or write from/to a partition that is protected against read or write, is to insert the key. This is also true for modifying its attributes (protection key, read, write and lock). Read/write access is disabled (the key is automatically removed) in each of the following events:

- Power-down
- Removal of the protection key

For further information on protection, please refer to the *DOC Driver Software Development Kit* (*SDK*) developer guide.

4.1.2 LOCK# signal

mDOC H3 has an additional hardware safety measure. If the Lock option is enabled for a specific partition, and the LOCK# signal is asserted, the protected partition has an additional hardware lock that prevents read/write access to the partition, even with the use of the correct protection key.

4.1.3 Sticky Lock (SLOCK)

It is possible to set the Lock protection for one session only; that is, until the next power-up or reset. This Sticky Lock feature can be useful when the boot code in the boot partition must be read/write protected. Upon power-up, the boot code must be unprotected so the CPU can run it directly from mDOC H3. At the end of the boot process, protection can be set until the next power-up or reset. This is done by setting the Sticky Lock (SLOCK) bit in the Software Lock register, or using a dedicated S/W API, and has the same effect as asserting the LOCK# signal. Once set, SLOCK can only be cleared by asserting the RSTIN# input. Like the LOCK# input, assertion of this bit prevents the protection key from disabling the protection for a given partition. There is no need to mount the partition prior to this operation.

4.1.4 Unique Identification (UID) Number

Each mDOC H3 is assigned a 16-byte UID number. Burned onto the flash during production, the UID cannot be altered and is worldwide unique. The UID is essential for security-related

applications, and can be used to identify end-user products in order to fight fraudulent duplication by imitators.

4.1.5 One-Time Programmable (OTP) Partitions

OTP feature is implemented on a per-partition basis, for full flexibility. Once a partition has been defined as OTP (upon initial media-formatting), it can be written only once, after which it is automatically and permanently locked. After it is locked, the OTP partition becomes read only, just like a ROM device.

Regardless of the state of any of the LOCK options, OTP partitions cannot be erased.

Typically, the OTP partition is used to store customer and product information such as: product ID, software version, production data, customer ID, PKI keys, service provider information and tracking information.

5. MDOC H3 Modes of Operation

Figure 7 shows the different modes of mDOC H3 device operation and the interchange between optional modes.

mDOC H3 can operate in any one of five basic power modes/states:

- Reset state
- Turbo mode
- Power save mode
- Standby mode
- Deep Power-Down mode

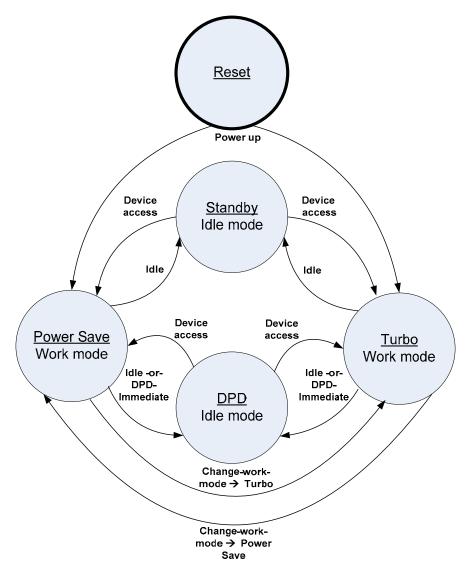


Figure 7: Operation Modes State Machine

The above power modes are separated into two main groups:

- Work mode group in which the device is active and performs various transactions.
- Idle mode group in which the device is not active.

The power mode is determined as follows:

- Assertion of the RSTIN# signal sets the device in Reset state.
- Upon power up the device enters its pre-configured work mode.
- Default work mode is Turbo mode. The default can be changed to PowerSave mode and viceverse using S/W API.
- Once in any idle mode the device will move to work mode upon any transaction. It may return to idle mode upon inactivity, if so configured.
- Entry and exit to/from Deep Power-Down mode is described below.

5.1 Reset State

While in Reset State, mDOC H3 ignores all write transactions and returns unknown value upon read transactions.

5.2 Turbo Mode

This mode is defined as a "work mode" and is optimized for performance. All internal clocks are set to maximal work frequency.

In this mode all standard operations involving the flash memory can be performed.

5.3 Power Save Mode

This mode defined as a "work mode" and is optimized for balance between power consumption and performance. Balance is achieved by setting internal clocks to predefined optimal settings.

In this mode all standard operations involving the flash memory can be performed.

5.4 Standby Mode

mDOC H3 enters standby mode upon device inactivity. In Standby mode the clock of most internal cores is either disconnected or reduced to a minimum. There is no wake-up time penalty when switching back to working mode.

5.5 Deep Power-Down Mode

While in Deep Power-Down mode, the quiescent power dissipation of the mDOC H3 device is reduced by disabling internal high current consumers (e.g. voltage regulators, input buffers, oscillator etc.)

Entering Deep Power-Down mode is done by either of the following:

- Writing to POWER DN bit in the Power Mode Register
- Activating a SW API to put the device immediately in DPD
- Setting Auto DPD mode by SW The device will enter DPD upon device inactivity

Entering Deep Power-Down mode and then returning to the previous mode does not affect the value of any register.

Exiting Deep Power-Down mode is done using one of the following methods:

- Performing a read/write access from/to mDOC H3
- Asserting the RSTIN# input

6. EMBEDDED TRUEFFS TECHNOLOGY

6.1 General Description

msystems' patented TrueFFS technology was designed to maximize the benefits of flash memory while overcoming inherent flash limitations that would otherwise reduce its performance, reliability and lifetime. TrueFFS emulates a hard disk making flash transactions completely transparent to the OS. In addition, since DOC driver operates under the OS file system layer, and exports standard Block Device API, it is completely transparent to the application.

TrueFFS is now embedded within the mDOC H3 device, eliminating the need for complicated software integrations and enabling a practically Plug & Play integration with the system. mDOC H3 with Embedded TrueFFS handles all the complexity of flash management for the host SW. This dramatically simplifies software integration and test. It also allows for cost reductions to be achieved in projects using mDOC by upgrading to newer generations of mDOC devices based on newer and more cost effective NAND technologies. The embedded flash management offered by TrueFFS assures that software on the host system or mass production tools need not to be changed or re-qualified when flash technology is changed.

mDOC SW support includes:

- Drivers support for all major OSs
- DOC driver Software Development Kit (DOC driver SDK)
- TrueFFS 7.1 Software Development Kit (TrueFFS 7.1 SDK) One SW package to support both earlier mDOC technologies (such as G3, G4 and H1) and mDOC H3.
- Support for all major CPUs, including 16 and 32-bit bus architectures

Embedded TrueFFS technology features:

- Flash management
- Bad-block management
- Dynamic virtual mapping
- Dynamic and static wear-leveling
- Power failure management
- Implementation of EDC/ECC
- Performance optimization

6.2 Operating System Support

The DOC driver is integrated into all major OSs, including Symbian, Microsoft Windows Mobile, Windows CE, Linux, VxWorks and others. For a complete listing of all available drivers, please contact your local msystems sales office or distributor.

6.3 DOC Driver Software Development Kit (SDK)

DOC driver *Software Development Kit (SDK)* provides the source code for the DOC driver. It can be used in an OS-less environment or when special customization of the driver is required for

proprietary OSs. The DOC driver SDK is used also for utilizing mDOC H3 as the boot device. TrueFFS 7.1 Software Development Kit (TrueFFS 7.1 SDK) provides the DOC driver code, bundled with the TrueFFS code needed to support earlier mDOC technologies (such as G3, G4 and H1) as well.

6.3.1 File Management

DOC driver accesses the flash memory within mDOC H3 through either 8KB or 128KB window in the CPU memory space, depending on the mDOC H3 configuration. mDOC driver provides block device API by using standard file system calls, identical to those used for a hard disk, to enable reading from and writing to mDOC H3. This makes mDOC H3 compatible with any file system and file system utilities, such as diagnostic tools and applications.

Note: mDOC H3 is shipped unformatted and contains virgin media.

6.3.2 Bad-Block Management

Since NAND flash is an imperfect storage media, it can contain bad blocks that cannot be used for storage because of their high error rates. Embedded TrueFFS automatically detects and maps out bad blocks upon system initialization, ensuring that they are not used for storage. This management process is completely transparent to the user, who is unaware of the existence and location of bad blocks, while remaining confident of the integrity of data stored.

6.3.3 Wear-Leveling

Flash memory can be erased a limited number of times. This number is called the *erase cycle limit*, or *write endurance limit*, and is defined by the flash device vendor. The erase cycle limit applies to each individual erase block in the flash device.

In a typical application, and especially if a file system is used, specific pages are constantly updated (e.g., the pages that contain the FAT, registry, etc.). Without any special handling, these pages would wear out more rapidly than other pages, reducing the lifetime of the entire flash.

To overcome this inherent deficiency, Embedded TrueFFS uses msystems' patented wear-leveling algorithm. This wear-leveling algorithm ensures that consecutive writes of a specific sector are not written physically to the same page in the flash. This spreads flash media usage evenly across all pages, thereby maximizing flash lifetime.

Dynamic Wear-Leveling

Embedded TrueFFS uses statistical allocation to perform dynamic wear-leveling on newly written data. This means that new data will be written to flash units which are less worn out.

Static Wear-Leveling

Areas on the flash media may contain static files, characterized by blocks of data that remain unchanged for very long periods of time, or even for the whole device lifetime. If wear-leveling were only applied on newly written pages, static areas would never be cycled. This limited application of wear-leveling would lower life expectancy significantly in cases where flash memory contains large static areas. To overcome this problem, Embedded TrueFFS forces data transfer in static areas as well as in dynamic areas, thereby applying wear-leveling to the entire media.

6.3.4 Power Failure Management

Embedded TrueFFS uses algorithms based on "erase after write" instead of "erase before write" to ensure data integrity during normal operation and in the event of a power failure. Used areas are reclaimed for erasing and writing the flash management information into them only *after* an operation is complete. This procedure serves as a check on data integrity.

The "erase after write" algorithm is also used to update and store mapping information on the flash memory. This keeps the mapping information coherent even during power failures. The only mapping information held in RAM is a table pointing to the location of the actual mapping information. This table is reconstructed during power-up or after reset from the information stored in the flash memory.

To prevent data from being lost or corrupted, Embedded TrueFFS uses the following mechanisms:

- When writing, copying, or erasing the flash device, the data format remains valid at all intermediate stages. Previous data is never erased until the operation has been completed and the new data has been verified.
- A data sector cannot exist in a partially written state. The operation is either successfully completed, in which case the new sector contents are valid, or the operation has not yet been completed or has failed, in which case the old sector contents remain valid.

6.3.5 Error Detection/Correction

Embedded TrueFFS implements a unique Error Correction Code (ECC) algorithm to ensure data reliability. Refer to Section 3.5 for further information on the EDC/ECC mechanism.

6.3.6 Special Features through I/O Control (IOCTL) Mechanism

In addition to standard storage device functionality, the DOC driver provides extended functionality. This functionality goes beyond simple data storage capabilities to include features such as: formatting the media, read/write protection, boot partition(s) access and other options. This unique functionality is available in all DOC drivers through the standard I/O control command of the native file system.

6.3.7 Compatibility

Migrating from mDOC G3/G4/H1 and mDOC G3/G4 -based MCP to mDOC H3 and mDOC H3 -based MCP can be done by TrueFFS 7.1.

TrueFFS 7.1 supports all mDOC product line including mDOC G3/G4/H1 and mDOC H3.

DOC driver 1.0 and higher provides stand alone SW support for mDOC H3 only. It does not support mDOC G3/G4 and H1.

When using different software modules (e.g. Block Device DOC driver, Boot application, formatting utilities, etc.) to access mDOC H3 it is crucial to verify that all software modules are based on the same code base version. It is also important to use only tools (e.g. DOCFORMAT, DOCINFO, DOCGETIMAGE, DOCPUTIMAGE, etc.) from the same version as the DOC drivers used by the application. Failure to do so may lead to unexpected results, such as lost or

corrupted data. The driver version can be verified by the sign-on messages displayed, or by the version information presented by the driver or tool.

6.4 128KB Memory Window

mDOC H3 driver utilizes a 128KB memory window in the CPU address space, consisting of four 32KB sections as depicted in Figure 8. The addresses described here are relative to the absolute starting address of the 128KB memory window.

The 32KB Programmable Boot Block (XIP) is aliased to section 0, 2 and 3. The sections are aligned to addresses 00000H, 10000H and 18000H additionally the second half of section 1 contains the second half of the IPL. This is done in order to enable additional flexibility in the IPL addressing schemes.

Address 8000H + offset is the base address for the mDOC H3 registers used for communication with the mDOC H3 device (excluding the Paged RAM Registers).

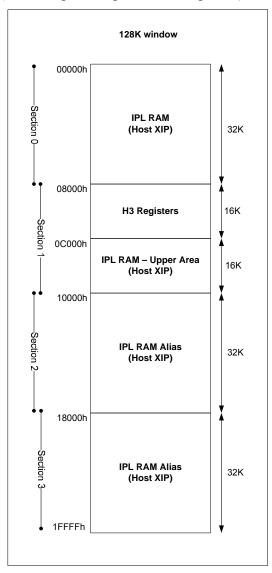


Figure 8: mDOC H3 128KB Memory Map

6.5 8KB Memory Window

For the purposes of backward compatibility, mDOC H3 can present an 8KB memory window in the CPU address space, depicted in Figure 9. The addresses described here are relative to the absolute starting address of the 8KB memory window.

The 2KB Programmable Boot Block (XIP) in section 0 is aligned to address 0000H.

Address 0800H + Offset is the base address for the H3 registers used for communication with the mDOC H3 device (excluding the Paged RAM registers).

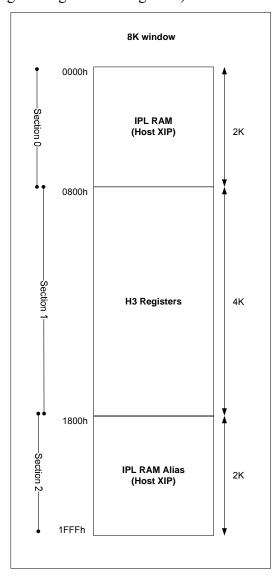


Figure 9: mDOC H3 8KB Memory Map

7. MDOC H3 REGISTERS

This section describes various mDOC H3 registers and their functions.

Table 3: mDOC H3 Registers

Address (Hex) 128KB Window	Address (Hex) 8KB Window	Width (Bits)	Register Name	
00	0030		Paged RAM command	
00)70	8	Paged RAM Select	
00	080	8	Paged RAM Unique ID Download	
800E	080E	8	Device Status	
800E	080E	8	Device Command	
801C	081C	8	Device Control	
9400/9422	1400/1422	16	Chip Identification [0:1] ¹	
9402/9424	1402/1424	16	Burst Write/Read Mode Control ¹	
9404	1404	16	Burst Write Mode Exit ¹	
9406	1406	16	Download Control ¹	
9408	1408	16	IPL Control ¹	
940A	140A	16	Warm Boot ¹	
940C	140C	16	Power Down ¹	
9416	1416	16	Power Mode ¹	
940E	140e	16	DMA Control ¹	
9418	1418	16	DMA Negation ¹	
9410	1410	16	Software Lock ¹	
9412	1412	16	Endian Control ¹	
941A	141A	16	Version Register ¹	

Note: This register cannot be accessed when A0 signal is pulled high. Therfore it is recommended that A0 will be connected to host CPU A0, or to VSS.

7.1 Definition of Terms

The following abbreviations and terms are used within this section:

RFU Reserved for future use. This bit is undefined during a read cycle and "don't care" during a write cycle.

RFU_0 Reserved for future use; when read, this bit always returns the value 0; when written, software should ensure that this bit is always set to 0.

RFU_1 Reserved for future use; when read, this bit always returns the value 1; when written, software should ensure that this bit is always set to 1.

Reset Value Refers to the value immediately present after moving from Reset State to one of

the work modes.

7.2 Reset Values

The Reset value written in the register description is the register value after mDOC H3 moves out from Reset state and enters one of the Work modes. Registers for which a value is not defined after moving from Reset State to one of the work modes, are marked by an N/A reset value.

7.3 Registers Description

This section describes various mDOC H3 registers and their functions.

7.3.1 Paged RAM Command Register

Description: This 8-bit register is used to enable Write to other Paged RAM registers.

Address (hex): 0030 (both 8KB window and 128KB Window)

Type: Write

	D7	D6	D5	D4	D3	D2	D1	D0
Read/Write	W	W	W	W	W	W	W	W
Bit Name		COMMAND						
Reset Value		N/A						

Bit No.	Description
COMMAND	COMMAND The value 71H must be written to enable a subsequent write cycle to the Paged RAM Page Select register. All other values: Reserved.

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.2 Paged RAM Select Register

Description: This 8-bit register is used to initiate a download operation of the specified 1KB

page. If the value 71H is not written to the Paged RAM Command register immediately before writing this register, the write cycle will be ignored.

Address (hex): 0070 (both 8KB window and 128KB Window)

Type: Write

	D7	D6	D5	D4	D3	D2	D1	D0
Read/Write	W	W	W	W	W	W	W	W
Description	SEQ		PAGE					
Reset Value	N/A	00H						

Bit No.	Description
SEQ	Sequential indication. Setting this bit initiates a download from the NEXT_PAGE pointer of the previously downloaded page. The value written to the PAGE field is ignored.
PAGE	Only significant when writing a 0 to the SEQ field. Only value 00H is supported.

PAGE value of 00H loads the same data as in hardware or software reset.

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.3 Paged RAM Unique ID Download Register

Description: Writing to this 8 bit register initiates a download of the 16-byte Unique

Identification (UID) number to offset 0 of the downloadable section of the IPL RAM. After polling for ready status, the requested data may be read from the

IPL RAM.

Writes to this register will be ignored if the prior bus cycle was not a write cycle to the Paged RAM Command Register with data 71H (intervening RAM read

cycles are allowed).

Address (hex): 0080 (both 8KB window and 128KB Window)

Type: Write

	D7-D0
Read/Write	W
Bit Name	RFU_0
Reset Value	N/A

7.3.4 Device Status Register

Description: This 8-bit register holds the status of the last command executed by the device,

upon command completion.

Address (hex): 800E (128KB window) / 080E (8KB window)

Type: Read

Bit number	D7	D6	D5-D4	D3	D2-D1	D0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W
Bit name	BSY	DRDY	RFU	DRQ	RFU	ERR
Reset value	0	0	0	0	0	0

BSY	Device Busy indication.
	0: Device not busy
	1: Device Busy

DRDY	Device Ready indication.
	0: Device not ready
	1: Device Ready
DRQ	Data Request
	0: Not ready to transfer data.
	1: Ready to transfer data.
ERR	Error bit.
	0: No error has occurred.
	1: An error has occurred during execution of the previous command.

7.3.5 Device Command Register

Description: This 8-bit register contains the command code being sent to the device.

Address (hex): 800E (128KB window) / 080E (8KB window)

Type: Write

Bit number	D7-D0
Read/Write	w
Bit name	COMMAND_CODE
Reset value	0

7.3.6 Device Control Register

Description: This 8-bit register allows a host to software-reset the device and to enable or

disable the assertion of the IRQ# signal.

Address (hex): 801C (128KB window) / 081C (8KB window)

Type: Read / Write

Bit number	D7-D3	D2	D1	D0
Read/Write	R	R/W	R/W	R
Bit name	RFU	SRST	nIEN	RFU
Reset value	0	0	0	0

-	
i	
i I	
SRST	Perform device Software reset.
OKOL	r Periorii device Software feset.

nIEN	Interrupt enable (to the host):
	0: Interrupt enable
	1: Interrupt Disable

7.3.7 Chip Identification (ID) Register [0:1]

Description: These two 16-bit registers are used to identify the mDOC device residing on the

host platform. They always return the same value.

Chip Identification Register [1] holds the bit inverse of Chip Identification

Register [0].

Address (hex): 128KB window: 9400 / 9422

8KB window 1400 / 1422

Type: Read only

	D15-D0
Read/Write	R
Bit Name	ChipID / ChipID inverse
Reset Value	Chip Identification Register[0]: 4833H
Reset value	Chip Identification Register[1] – bit inverse: B7CCH

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to the Host CPU A0, or to VSS.

7.3.8 Burst Mode Control Registers (Read & Write)

Description: These 16 bit registers contain the parameters for the burst transactions.

There is one register for burst write and one for burst read. The structure of both

registers is the same.

Address (hex): 128KB window: 9424 (Burst Read) / 9402 (Burst Write)

8KB window: 1424 (Burst Read) / 1402 (Burst Write)

Type: Read / Write

	D15-D14	D13	D12-D11	D10-D8	D7-D6	D5-D4	D3-D2	D1	D0
Read/Write	R	R/W	R/W	R/W	R	R	R	R/W	R
Bit name	RFU	HOLD	LENGTH	LATENCY	RFU	WAIT_STATE	RFU	BST_EN	RFU
Reset value	0	0	0	0	0	0	0	0	0

HOLD	Specifies if the data output/input on D [15:0] during burst mode read/write cycles should be held for one or two clock cycle.			
	0: Data is held for one clock cycle.			
	1: Data is held for two clock cycles.			
LENGTH	Specifies the number of words to be transferred in each burst cycle, as follows:			
	0: 4 Words			
	1: 8 Words			
	2: 16 Words			
	3: 32 Words			
LATENCY	Controls the number of clock cycles between assertion of CE# and availability of the first word of data to be latched by the host. The number of clock cycles is equal to 2 + LATENCY.			
	If HOLD = 1, then the data is available to be latched on this clock and on the subsequent clock.			
WAIT_STATE	The number of clocks from the [N-1] access until the assertion of CE#.			
	0: When host reads word N there is no CLK.			
	1: When host reads word N there is CLK			
	2-3: After the host reads word N there are 1 or 2 additional clocks until CE# deassertion.			
	Note: In Burst write the wait states start from the N word.			
BURST_EN	Enables burst mode cycles.			
	0: Burst mode is disabled.			
	1: Burst mode is enabled.			

Note: 1. This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

2. Burst mode can only be used in conjunction with mDOC H3 DMA functionality.

7.3.9 Burst Write Mode Exit Register

Description: Write to this 16-bit register takes the device out of Burst Write mode

Address (hex): 9404 (128KB window) / 1404 (8KB window)

Type: Write

	D15-D0
Read/Write	W
Bit Name	RFU
Reset Value	N/A

Note: 1. This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

2. Burst mode can only be used in conjunction with mDOC H3 DMA functionality.

7.3.10 Download Control Register

Description: This 16-bit register provides the status of IPL download from flash to internal

boot block.

Host can poll this register after reset until DOWNLOAD RUN is cleared.

Address (hex): 9406 (128KB window) / 1406 (8KB window)

Type: Read Only

Bit number	D15-D1	D0
Read/Write	R	R
Bit name	RFU	DOWNLOAD_RUN
Reset value	0	1

DOWNLOAD_RUN	Is IPL downloading in progress?
	0: Download process was completed.
	1: Download process is still in progress

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.11 IPL Control Register

Description: This 16-bit register controls the IPL window. Address (hex): 9408 (128KB window) / 1408 (8KB window)

Type: Read / Write

Bit number	D15-D6	D5-D4	D3-D2	D1	D0
Read/Write	R	R/W	R	R/W	R
Bit name	RFU	CLOSE_IPL_CS	RFU	IPL_WR_EN	IPL_WR_RDY
Reset value	0	0	0	0	0

CLOSE_IPL_CS	Enables the host to shut down part or whole of mDOC H3 XIP block.
	This feature is used after the boot has finished, saving power

	consumption of mDOC H3 internal RAM (Boot Block).			
	00: Whole XIP block is enabled.			
	01: Shut the lower 16 KB of the physical XIP block.			
	10: Shut the upper 16KB of the physical XIP block.			
	11: Shut the entire 32KB of the physical XIP block.			
IPL_WR_EN	This bit enables writing to the IPL window. Setting this bit is enabled only after device sets IPL_WR_RDY.			
	0: Write disable			
	1: Write enable			
IPL_WR_RDY	This bit is used by the device to indicate whether IPL window can be written by the HOST.			
	0: IPL window is not ready for writing.			
	1: IPL window is ready for writing.			

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.12 Warm Boot Register

Description: This 16-bit register is used to configure the warm reset input.

Address (hex): 940A (128KB window) / 140A (8KB window)

Type: Read / Write

Bit number	D15-D2	D1	D0
Read/Write	R	R/W	R/W
Bit name	RFU	BURST_ON	WARM_RST_POL
Reset value	0	0	0

BURST_ON	This bit indicates if the BURST_EN bits (Burst Mode Control Registers) should be reset on warm boot detection. 0: Reset BURST_EN bits			
	1: BURST EN bits unchanged			
WARM_RST_POL	This bit indicates the warm reset pin polarity			
	0: Active low			
	1: Active high			

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.13 Power-Down Register

Description: This 16-bit register controls the device response to the DPD input signal.

Address (hex): 940C (128KB window) / 140C (8KB window)

Type: Read / Write

Bit number	D15-D9	D8	D7-D0
Read/Write	R	R/W	R
Bit name	RFU	WAKE_UP_SEL_BIT	RFU
Reset value	0	0	0

WAKE_UP_SEL_BIT	Selects the device wake up trigger
	0: mDOC H3 CE# is the wakeup trigger.
	1: Read access (CE# & OE# assertion) or write access (CE# and
	WE# assertion) is the wakeup trigger.

7.3.14 Power Mode Register

Description: This 16-bit register is used to put mDOC H3 into Deep Power Down mode.

Address (hex): 9416 (128KB window) / 1416 (8KB window)

Type: Read / Write

Bit number	D15-D1	D0
Read/Write	R	W
Bit name	RFU	POWER_DN
Reset value	0	0

POWER DN	Setting this bit to '1' will put the device to Deep Power Down mode.

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.15 DMA Control Register

Description: This 16-bit register controls the DMA REQ signal to the host.

Address (hex): 940E (128KB window) / 140E (8KB window)

Type: Read / Write

Bit number	D15-D9	D8-D4	D3	D2	D1	D0
Read/Write	R	R/W	R	R/W	R/W	R/W
Bit name	RFU	PULSE_WIDTH	RFU	EDGE	DMA_POL	DMA_EN
Reset value	0	4	0	0	1	0

PULSE_WIDTH	The width of the DMARQ# signal will be: PULSE_WIDTH * ICMU_CLK (cycle). Maximum 32 ICMU clocks.	
	Note: If the value is zero then DMARQ# signal will not be asserted.	
EDGE	Level or Edge:	
	0: Level – DMARQ# will be asserted when data is ready and will be de-asserted before the end of the data according to DMA_PROG_NEG (DMA Negation Register).	
	1: Edge – DMARQ# will be generated for the number of clock specified in the PULSE_WIDTH field.	
DMA_POL	DMARQ# polarity:	
	0: active high	
	1: active low	
DMA_EN	DMA enable bit:	
	0: DMARQ# is disabled	
	1: DMARQ# is enabled	

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.16 DMA Negation Register

Description: This 16-bit register controls the negation of DMARQ# signal to the host.

Address (hex): 9418 (128KB window) / 1418 (8KB window)

Type: Read / Write

Bit number	D15-D10	D9-D0
Read/Write	R	R/W
Bit name	RFU	DMA_PROG_NEG
Reset value	0	4

DMA_PROG_NEG	DMA programmable negation:	
	0-1023: Number of clocks before end of data transfer that DMARQ# signal will be negated.	
	Note: DMA negation must be smaller than transfer size in words (16bit).	

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.17 Software Lock Register

Description: This 16-bit register implements the Sticky Lock functionality. After setting it,

protected-partitions can no longer be accessed, until the device is reset.

Address (hex): 9410 (128KB window) / 1410 (8KB window)

Type: Read / Write

Bit number	D15-D1	D0
Read/Write	R	R/W
Bit name	RFU	SLOCK
Reset value	0	0

SLOCK	Sticky Lock bit.
	0: Sticky Lock is not active
	1: Sticky Lock is activated
	This bit can only be set once by the host until device is reset.

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.18 Endian Control Register

Description: This 16-bit register is used to control the swapping of the low and high data

bytes when reading or writing with a 16-bit host. This provides an Endian-

independent method of enabling/disabling the byte swap feature.

Address (hex): 9412 (128KB window) / 1412 (8KB window)

Type: Read / Write

Bit number	D15-D9	D8	D7-D1	D0
Read/Write	R	R/W	R	R/W
Bit name	RFU	SWAP	RFU	SWAP
Reset value	0	0	0	0

SWAP	Swap enable per byte. (This bit can be set by setting bit-0 OR bit-8).
	To clear the bit both bits 0 & 8 need to be cleared to '0';
	0: Data from host is unchanged.
	1: Data from host is swapped.

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

7.3.19 Version Register

Description: This 16-bit register reports the mDOC H3 version.

Address (hex): 941A (128KB window) / 141A (8KB window)

Type: Read / Write

Bit number	D15-D0
Read/Write	R
Bit name	Version
Reset value	0

Version	Version number
---------	----------------

Note: This register cannot be accessed when the A0 signal is pulled high. Therefore it is recommended that A0 will be connected to Host CPU A0, or to VSS.

8. Booting from mDOC H3

8.1 Introduction

mDOC H3 can function both as a flash disk and as the system boot device.

If mDOC H3 is used both as a flash disk and as the system boot device, it contains the boot loader, an OS image and a file system. In such a configuration, mDOC H3 can serve as the only non-volatile device on board.

When using mDOC H3 as the system boot device, the CPU fetches the first instructions from the mDOC H3 Programmable Boot Block, which contains the IPL. The IPL handles the required platform initializations, and then loads the required image or OS Boot loader from its dedicated partition.

msystems' DOC driver, SDK and utilities enable the construction of a proper mDOC H3 layout in order to support the boot sequence. For a complete description of these tools, refer to the *DOC Driver Software Development Kit (SDK)* developer guide and the *DOC Software Utilities* user manual. These tools enable the following operations:

- Formatting mDOC H3
- Creating multiple partitions for different storage needs (IPL, Boot loader, OS images files, and FAT partitions)
- Programming the OS image file

Figure 10 illustrates an example of a boot sequence.

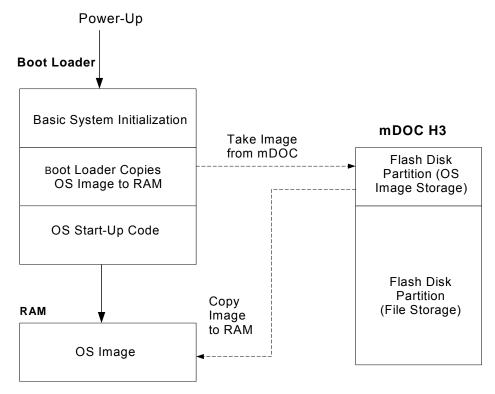


Figure 10: System Boot Sequence with mDOC H3

8.1.1 Asynchronous Boot Mode

Host platforms should use Asynchronous Boot mode when using mDOC H3 as the system boot device.

During platform initialization, certain CPUs wake up in 32-bit mode and issue instruction fetch cycles continuously. An Intel PXAxxx CPU, for example, initiates a 16-bit read cycle, but after the first word is read, it continues to hold CE# and OE# asserted while it increments the address and reads additional data as a burst.

Once in Asynchronous Boot mode, the CPU can fetch its instruction from the mDOC H3 Programmable Boot Block. After reading from this block and completing the boot, mDOC H3 returns to derive its internal clock signal from the CE#, OE#, and WE# inputs. Please refer to Section 10 for read timing specifications for Asynchronous Boot mode.

8.1.2 Virtual RAM Boot

The Virtual RAM Boot feature utilizes the 32KB physical IPL SRAM to provide XIP access to up the full XIP window size (either 8KB or 128KB) of flash data, without requiring any prior knowledge of the device architecture. This feature can be used to support Secure Boot requirements. The Virtual RAM Boot feature can only be used by platforms that support the mDOC H3 BUSY# signal and variable-length I/O access, i.e. insert wait cycles if BUSY# signal is active.

When mDOC H3 is configured for Virtual RAM Boot mode, the mode is retained after Reset as well. While in this mode, read cycles from the entire mDOC H3 128KB memory window return virtual RAM data.

Access to an address that is not within the physical window of this configuration (2KB in 8KB window or 32KB in 128KB window), initiates a download operation in which the required data is copied from the NAND flash to the physical SRAM. The mDOC H3 BUSY# output is asserted for the duration of the download, to indicate that the data is not ready, holding the platform in a wait state. When the download is completed the BUSY# line will be de-asserted. This handshake mechanism is compatible with CPU bus controllers that support automatic insertion of wait states based on the state of a /RDY signal. The platform must be capable of being held in a wait state for an arbitrary period during each download process, without interference from watchdog timers.

The download is transparent to the host software; XIP and random access to any location within the full virtual address space are therefore supported.

To exit the virtual mode, the host CPU should perform a write into the mDOC H3 window, to an address as follows:

• 8KB mode: A11 = 1 and A12 = 0

• 128KB mode: A11-A15 = 0 and A16 = 1

For more information on how to boot from mDOC H3 in Virtual RAM Boot mode, please contact your local msystems sales office.

8.1.3 Paged RAM Boot

The Paged RAM Boot feature uses the IPL SRAM as two 1KB sections. The first section provides constant data, while the other section can be downloaded sequentially with flash data. One application of this feature is to support Secure Boot requirements. The Paged RAM Boot feature does not require support of the BUSY# output.

After a hardware or software reset, mDOC H3 initializes the first 2KB of XIP RAM with data stored in the first 2KB of the pre-programmed IPL. The Paged RAM Boot feature permits 1KB virtual pages (up to 254KB total) to be downloaded sequentially to the XIP RAM, upon receiving the proper command sequence. Since the mDOC H3 BUSY# output is not asserted by a page-load operation, a polling procedure is required to determine when the download is complete. An XIP operation from the mDOC H3 RAM is not supported during this polling operation, so it must be executed from system RAM or ROM instead.

When two mDOC H3 devices are cascaded, Paged RAM downloads occur only on the first mDOC H3 device in the cascaded configuration (device-0).

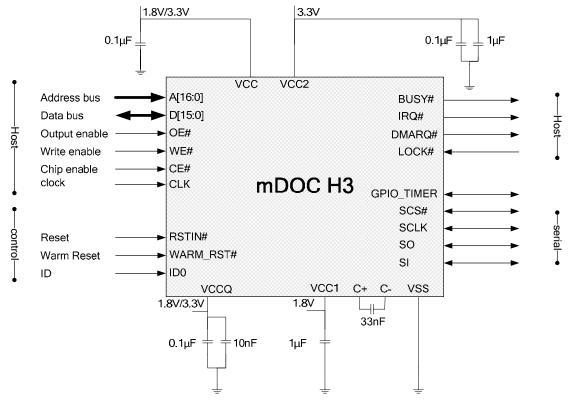
For more information on booting from mDOC H3 in Paged RAM Boot mode, please contact your local msystems sales office.

9. DESIGN CONSIDERATIONS

9.1 General Guidelines

- A typical RISC processor memory architecture may include the following devices:
- **mDOC H3**: Contains the OS image, applications, registry entries, back-up data, user files and data, etc. It can also be used to perform boot operation, thereby replacing the need for a separate boot device.
- **CPU**: mDOC H3 is compatible with all major CPUs in the mobile phone, Digital TV (DTV), Digital Still Camera (DSC), MP3, GPS and other Portable Consumer Electronics Applications markets, including:
 - o ARM-based CPUs
 - o Texas Instruments OMAP, DBB
 - Intel PXAxxx family
 - o Infineon xGold family
 - o Analog Devices (ADI) digital Baseband devices
 - o Freescale i.MXxx Application processors and i.xx digital Baseband devices
 - o Zoran ER4525
 - o Renesas SH mobile
 - o EMP platforms
 - o Qualcomm MSMxxxx
- **Boot Device**: In case mDOC H3 is not used as a boot device, ROM or NOR flash that contains the boot code is required for system initialization, kernel relocation, loading the operating systems and/or other applications and files into the RAM and executing them.
- **RAM/DRAM Memory**: This memory is used for code execution.
- **Other Devices**: A DSP processor, for example, may be used in a RISC architecture for enhanced multimedia support.

9.2 Configuration and GPIO Interface

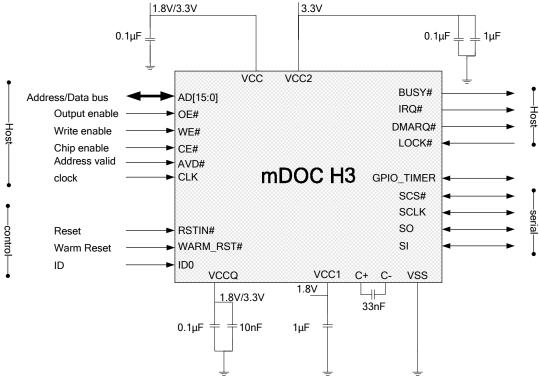

The Configuration and GPIO Interface enables the designer to configure mDOC H3 to operate in different modes and to use the GPIO for predefined purposes.

- The ID0 signal is used in a cascaded configuration.
- The LOCK# signal is used for hardware write/read protection
- GPIO TIMER signal is a predefined timer waveform with vary frequency and duty cycle
- WARM RST# signal (Warm reset) is used for triggering device warm-reset of mDOC H3.

9.3 Standard NOR-Like Interface

mDOC H3 uses a NOR-like interface that can easily be connected to any microprocessor bus. With a standard interface, it requires 16 address lines, 16 data lines and basic memory control signals (CE#, OE#, WE#), as shown in Figure 11 below. Typically, mDOC H3 can be mapped to any free 128KB memory space (8KB address space requires less address lines).

For power connectivity please refer to mDOC H3 power supply connectivity in section 9.5.


Figure 11: Standard System Interface

- Notes: 1. The 0.1 uF and the 10 nF low-inductance, high-frequency capacitors must be attached to each of the device's power and VSS balls according to the above figure. These capacitors must be placed as close as possible to the package leads.
 - 2. The 1 uF capacitors are for internal voltage regulators stability.
 - 3. mDOC H3 is an edge-sensitive device. CE#, OE#, and WE# should be properly terminated (according to board layout, serial parallel or both terminations) to avoid signal ringing.

9.4 Multiplexed Interface

With multiplexed interface, mDOC H3 requires the signals shown in Figure 12 below.

For power connectivity please refer to mDOC H3 power supply connectivity in section 9.5.

Figure 12: Multiplexed System Interface

- Notes: 1. The 0.1 uF and the 10 nF low-inductance, high-frequency capacitors must be attached to each of the device's VCC and VSS balls according to Table 4. These capacitors must be placed as close as possible to the package leads.
 - 2. The 1 uF capacitors are for internal voltage regulators stability.
 - 3. mDOC H3 is an edge-sensitive device. CE#, OE#, and WE# should be properly terminated (according to board layout, serial parallel or both terminations) to avoid signal ringing.

9.5 H3 Power Supply Connectivity

mDOC H3 can be configured to support different combinations of Core and IO host supply.

Table 4 lists the connectivity required for the support of the different available combinations.

mDOC H3 Power VCC **VCCQ** VCC1 VCC2 C+, C-Supply Connect to a Core: 3.3V [2.7V-3.6V] 3.3V 3.3V 3.3V No Connection 1uF capacitor **IO: 3.3V** [2.5V-3.6V] [2.7V-3.6V] [2.5V-3.6V] [2.7V-3.6V] to VSS Connect to a Core: 3.3V [2.7V-3.6V] 3.3V 3.3V 1.8V No Connection 1uF capacitor **IO: 1.8V** [1.65V-1.95V] [2.7V-3.6V] [2.7V-3.6V] [1.65V-1.95V] to VSS Requires a 1uF Core: 1.8V [1.65V-1.95V] 1.8V 1.8V 1.8V Requires a 33nF and 0.1uF capacitor **IO: 1.8V** [1.65V-1.95V] [1.65V-1.95V] [1.65V-1.95V] [1.65V-1.95V] capacitor only

Table 4: Power Connectivity

9.6 Connecting Control Signals

9.6.1 Standard Interface

When using a standard NOR-like interface, connect the control signals as follows:

- A[16:0] Connect these signals to the host address signals (see Section 9.10 for platform-related considerations). The A0 signal may be connected to either the host CPU A0 signal or to VSS.
- D[15:0] Connect these signals to the host data signals (see Section 9.10 for platform-related considerations).
- OE# (Output Enable) and Write Enable (WE#) Connect these signals to the host RD# and WR# signals, respectively.
- CE# (Chip Enable) Connect this signal to the memory address decoder. Most RISC/mobile processors include a programmable decoder to generate various Chip Select (CS) outputs for different memory zones. These CS signals can be programmed to support different wait states to accommodate mDOC H3 timing specifications.
- RSTIN# (Power-On Reset In) Connect this signal to the host active-low Power-On Reset signal.
- ID0 (Chip Identification) Connect this signal as shown in Figure 11. This signal must be connected to VSS if the host uses only one mDOC H3. If more than one device is being used, refer to Section 9.9 for more information on device cascading.

- BUSY# (Busy) This signal indicates when the device is ready for first access after reset. It may be connected to an input port of the host, or alternatively it may be used to hold the host in a wait-state condition. The later option is required for hosts that boot from mDOC H3.
- DMARQ# (DMA Request) Output used to control multi-page DMA operations. Connect this output to the DMA controller of the host platform.
- IRQ# (Interrupt Request) Connect this signal to the host interrupt.
- Lock# (LOCK) Connect to a logical 0 to prevent the usage of the protection key to open a protected partition. Connect to logical 1 in order to enable usage of protection keys.
- CLK (Clock) This input is used to support Burst operation when reading flash data. Refer to Section 9.8 for further information on Burst operation.
- WARM_RST# (Warm Reset) The warm reset input is used to reset only the host interface block. This option is to be used in case the host experienced a reset which mDOC H3 is not exposed to for any reason. For example in case of watchdog reset in specific platforms, GPIO reset etc. It is recommended to connect this input to system nRESET_OUT signal if available or to a host GPIO in other cases. Upon assertion of the warm reset signal mDOC H3 host interface will switch to a pre-defined state according to the data written in a dedicated control register (refer to Warm Boot Register for detailed description). The configurable operation of the warm boot input allows mDOC H3 to be connected to all of the platforms without being stacked by any kind of reset.

9.6.2 Multiplexed Interface

mDOC H3 can use a multiplexed interface to connect to a multiplexed bus. In this configuration, mDOC H3 AVD# signal is driven by the host's AVD# signal, and the D[15:0] balls, used for both address inputs and data, are connected to the host AD[15:0] bus.

This mode is automatically entered when a falling edge is detected on AVD#. This edge must occur after RSTIN# is negated and before OE# and CE# are both asserted; i.e., the first read cycle made to mDOC must observe the multiplexed mode protocol. See Section 10 for more information about the related timing requirements.

Please refer to Section 2.3 for ballout and signal descriptions, and to Section 10 for timing specifications for a multiplexed interface.

9.7 Implementing the Interrupt Mechanism

9.7.1 Hardware Configuration

To configure the hardware for working with the interrupt mechanism, the IRQ# ball should be connected to a host interrupt input.

9.7.2 Software Configuration

IRQ# signal may be used by mDOC H3 to interrupt the host system, provided that device interrupts are enabled. Interrupts can be enabled or disabled by writing the nIEN bit in the Device Control register. IRQ# signal behavior (active high/low, edge/level) must be configured during device formatting, using the appropriate low level format utilities such ad DOCFORMAT and DOC driver format API.

mDOC H3 will interrupt the host system in the following cases:

- On completion of block device operation to mDOC H3.
- Device is ready to send a data block during a read operation.
- Device is ready to receive a data block (excluding the first) during write operation.

The device will exit the interrupt-pending state in the following cases:

- The Device Status register is read, and BSY bit is cleared;
- Both BSY and DRQ bits in Device Status register are cleared, and the Command register is written.
- SRST bit in Device Control register is set.

9.8 DMA and Burst Operation

mDOC H3 enhances performance using various proprietary techniques among them are

- Burst operation to read large chunks of data, providing a Burst read speed.
- DMA operation to release the CPU for other tasks in coordination with the platform's DMA controller. This is especially useful during the boot stage. Up to 128KB of data can be transferred during a DMA operation.

9.8.1 DMA Operation

mDOC H3 provides a DMARQ# output that enables data transfer using the host DMA controller. During DMA operation, the DMARQ# output is used to notify the host DMA controller that data is ready to be read or written. mDOC H3 protocol enables such data transfer up to the maximal size of 128KB per read or write operation.

The DMARQ# output sensitivity is selected by setting the EDGE bit in the DMA Control register:

- 1. Edge DMARQ# output pulses to indicate to the DMA controller that a data is ready to be transferred. The EDGE bit is set to 1 for this mode. The amount of data that will be transferred corresponds to data block size.
- 2. Level DMARQ# output is asserted while the data is available for read, or data can be accepted for write. The EDGE bit is set to 0 for this mode.

The following steps are required in order to initiate a DMA operation:

- 1. If the DMA controller supports an edge-sensitive DMARQ# signal, then initialize the DMA controller to transfer 512 bytes (or your chosen data block size) upon each DMA request. If the DMA controller supports a level-sensitive DMARQ# signal, then initialize the DMA controller to transfer data continuously while DMARQ# is asserted.
- 2. Set in the DMA Control register values of EDGE bit, PULSE_WIDTH and DMA polarity corresponding to settings of the host DMA controller. This can be done only once after system power-up.
- 3. Enable DMA transfer with DMA EN bit in the DMA control register.

- 4. If host DMA controller detects the de-assertion of the DMARQ# signal too late (and attempts to transfer additional words as a result), then DMARQ# can be configured to be deasserted earlier by using the DMA Negation Register.
- 5. Program host DMA controller to transfer the same number of sectors as will be given in following logical command.
- 6. Issue the DMA data-transfer read/write command with same number of sectors to transfer as given in the previous step (prior to this, the device should be instructed to perform transfers in DMA-mode).

Upon command completion IRQ# will be asserted (it is recommended to use IRQ# when working with DMA). In case of a failure, less than expected amount of data could be transferred.

In commands that use DMA transfer, IRQ# is activated only at the completion of the whole command; while in commands that do not use DMA transfer IRQ# is typically activated with every data transfer.

In case DMA transfer needs to be aborted, SRST should be set in the Device Control register, in order to abort the command. After this wait until mDOC H3 is no longer BUSY.

Default setting of DMARQ# is level and active-low. It can be modified at programming / formatting stage.

9.8.2 Burst Operation

Burst operation is especially effective for large file reads that are typical during boot-up. Data is read by the host one 16-bit word after another using the CLK input.

Burst operation is controlled by 5 bit fields in each Burst Mode Control register (one for Burst read and one for Burst write): BURST_EN, WAIT_STATE, LATENCY, HOLD and LENGTH. For full details on this register, please refer to Section 6.5.

Burst Read / Write mode is enabled by setting the BURST_EN bit in each Burst Mode Control register.

The HOLD bit in the Burst Mode Control register can be set to hold each data word valid for two clock cycles rather than one.

The LENGTH field must be programmed with the length of the burst to be performed (0 corresponds to 4 cycles; 1 to 8 cycles, 2 to 16 and 3 corresponds to 32 cycles). Each burst cycle must read exactly this number of words.

WAIT_STATE allows setting the number of CLK after the host has read the [N-1] word until the assertion of the CE#.

- 0: None No CLK before CE# assertion.
- 1: One CLK clock before CE# assertion.
- 2: Two CLK clocks before CE# assertion.
- 3: Three CLK clocks before CE# assertion.

Note: In Burst write the wait states start from the Nth word.

The LATENCY field controls the number of clock cycles between mDOC H3 sampling CE# being asserted and when the first word of data is available to be latched by the host. This number of clock cycles is equal to 2 + LATENCY.

Note: If HOLD = 1, then the data is available to be latched on this clock and on the subsequent clock.

The CLK input can be toggled continuously or can be halted. When halting the CLK input, the following guidelines must be observed:

- After asserting OE# and CE#, LATENCY + 2 CLK cycles are required prior to latching the first word
- If the HOLD bit is set to 0, the host must provide one rising CLK edge for each word read, except for the last word latched, for which CLK does not need to be toggled.
- If the HOLD bit is set to 1, the host must provide two rising CLK edges for each word read, except for the last word, for which the second of the two CLK rising edges is not required.
- Subsequent toggling of the CLK is optional.

Burst should be disabled before accessing mDOC H3 registers or IPL. This can be done by writing to the BURST_EN bit in Burst Mode Control Registers, which is the only accessible register in burst mode.

- Notes: 1. Burst mode has to be turned off in order to respond to the mDOC H3 interrupt requests (generated during combined Burst and DMA operation).
 - 2. Burst mode can be used only in conjunction with DMA operation, since the status register cannot be polled in the middle of a burst transfer, to determine command completion.
 - 3. Burst Write mode can be aborted by writing to Burst Write Mode Exit register.

9.9 Device Cascading

When connecting mDOC H3 using a standard interface, up to two devices can be cascaded with no external decoding circuitry. Figure 13 illustrates the configuration required to cascade two devices on the host bus (only the relevant cascading signals are included in this figure, although all other signals must also be connected). All balls of the cascaded devices must be wired in common, except for ID0. The ID ball values determine the identity of each device – the first device is identified by connecting the ID ball as 0, and the second device by connecting the ID ball as 1. Systems that use only one mDOC H3 should connect ID0 to GND.

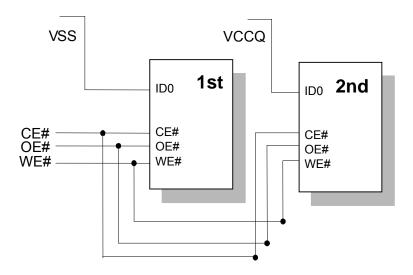


Figure 13: Standard Interface, Cascaded Configuration

9.10 Platform-Specific Issues

This section discusses hardware design issues for major embedded RISC processor families.

9.10.1 Wait State

Wait states can be implemented only when mDOC H3 is designed in a bus that supports a Wait state insertion, and supplies a WAIT signal.

9.10.2 Big and Little Endian Systems

mDOC H3 is a Little Endian device. Therefore, byte lane 0 (D[7:0]) is its Least Significant Byte (LSB) and byte lane 1 (D[15:8]) is its Most Significant Byte (MSB). Within the byte lanes, bit D0 and bit D8 are the least significant bits of their respective byte lanes. mDOC H3 can be connected to a Big Endian device in one of two ways:

- 1. Make sure to identify byte lane 0 and byte lane 1 of your processor. Then, connect the data bus so that the byte lanes of the CPU match the byte lanes of mDOC H3. Pay special attention to processors that also change the bit ordering within the bytes (for example, PowerPC). Failing to follow these rules results in improper connection of mDOC H3, and prevents the DOC driver from identifying it.
- 2. If needed, set the SWAP bits in the Endian Control register. This enables byte swapping when used with big endian 16-bit hosts. Please note the Endian Control register cannot be set while A0 is pulled high.

9.10.3 Busy Signal

The Busy signal (BUSY#) indicates that mDOC H3 has not yet completed internal initialization. After reset, BUSY# is asserted while the IPL is downloaded into the internal boot block. Once the download process is completed, BUSY# is de-asserted. It can be used to delay the first access to mDOC H3 until it is ready to accept valid cycles.

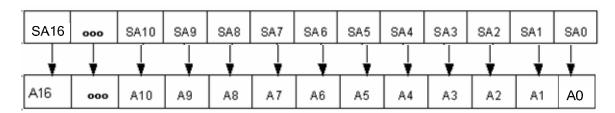
Note: mDOC H3 does NOT use this signal to indicate that the flash is in busy state (e.g. program, read, or erase).

9.10.4 Working with 16/32-Bit Systems

mDOC H3 uses a 16-bit data bus and supports 16-bit data access by default. However, it can be configured to support 32-bit data access mode. This section describes the connections required for each mode.

The default of the DOC driver for mDOC H3 is set to work in 16-bit mode. It must be specially configured to support 32-bit mode. Please see DOC Driver or TrueFFS 7.1 documentation for further details.

Note: The mDOC H3 data bus must be connected to the Least Significant Bits (LSB) of the system.


16-Bit (Word) Data Access Mode

The mDOC H3 is 16 bit wide device. All accesses to and from the device are 16 bit wide.

mDOC H3 address lines should be connected to system host address lines, as depicted in Figure 14

mDOC H3 A0 line should be connected either to system host SA0 address line, or to VSS.

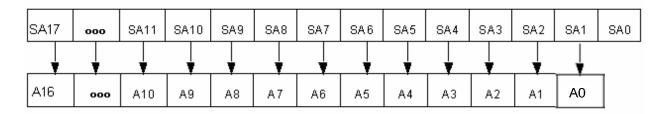
System Host

mDOC H3

Note: The prefix "SA" indicates system host address lines

Figure 15: 16-Bit Data Access Mode

32-Bit (Double Word) Data Access Mode


In a 32-bit bus system that cannot execute word-aligned accesses, the system address lines SA0 and SA1 are always 0. Consecutive double words (32-bit words) are differentiated by SA2 toggling. Therefore, in 32-bit systems that support only 32-bit data access cycles, mDOC H3 signal A1 is connected to the first system address bit that toggles; i.e., SA2.

mDOC H3 address lines should be connected to system host address lines, as depicted in Figure 16.

mDOC H3 A0 line should be connected either to system host SA1 address line, or to VSS

System Host

mDOC H3

Note: The prefix "SA" indicates system host address lines

Figure 17: Address Shift Configuration for 32-Bit Data Access Mode

9.11 Design Environment

mDOC H3 provides a complete design environment consisting of:

- Evaluation boards (EVBs) for enabling software integration and development with mDOC H3, even before the target platform is available.
- Programming solutions:
 - o Programmer
 - Programming house
 - o On-board programming
- DOC Driver Software Development Kit (SDK)
- TrueFFs 7.1 Software Development Kit (SDK)
- XP utilities:
 - DocFormat
 - DocGetImage
 - DocPutImage
 - o DocInfo
- Documentation:
 - Data sheet
 - o Application notes
 - Technical notes
 - o Articles
 - White papers

Please visit the msystems website (www.m-systems.com) for the most updated documentation.

10. PRODUCT SPECIFICATIONS

10.1 Environmental Specifications

10.1.1 Operating Temperature

Extended temperature range: -40°C to +85°C

10.1.2 Thermal Characteristics

Table 5: Thermal Characteristics

Thermal Resistance (°C/W)				
Junction to Case (θJC): 40*	Junction to Ambient (θJA): 90*			

^{*} Note: Final numbers may vary within a range of 10%

10.1.3 Humidity

10% to 90% relative, non-condensing.

10.2 Electrical Specifications

10.2.1 Absolute Maximum Ratings

Table 6: Absolute Maximum Ratings

Parameter	Symbol	Rating	Units
1.8V DC supply voltage	VCC1	-0.3 to 2	V
3.3V DC supply voltage	VCC	-0.3 to 4	V
Input pin voltage	Vin	-0.3 to 3.6	V
Ambient Temperature	OTR	-40 to 85	°C
Storage temperature	Tstg	-55 to +150	°C

10.2.2 Capacitance

Table 7: Capacitance

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{IN}	Input capacitance	V _{IN} = 0V			10	pF
C _{OUT}	Output capacitance	V ₀ = 0V			10	pF

10.2.3 DC Characteristics

10.2.3.1 1.8V Core, 1.8V I/O

Table 8: 1.8V Core, 1.8V I/O

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VCCQ	I/O power supply		1.65	1.8	1.95	V
VCC2	Internal supply		NC	NC	NC	-
VCC	Device supply		1.65	1.8	1.95	V
VCC1	Internal supply		1.65	1.8	1.95	V
VIH	Input High-level Voltage		0.65*VC CQ		0.3+ VCCQ	V
VIL	Input Low-level Voltage		-0.3		0.35* VCCQ	V
П	Input Leakage Current	0≤VIN≤VCCQ	-10		10	uA
IOZ	Tri-State output leakage current	0≤VIN≤VCCQ	-10		10	uA
Vhys	Hysteresis	Schmidt trigger inputs	400			mV
VOH	High-level Output Voltage	IOH=4mA- 12mA	VCCQ- 0.45			V
VOL	Low-level Output Voltage	IOH=4mA- 12mA			0.45	V
PU	Pull up resistance		95	149	261	kΩ
PD	Pull down resistance		77	135	312	kΩ
Icc	Active supply current ¹	T=25C	20	30	60	mA
ICC	(cycle time = 60 ns)					
1	Standby supply current ¹	DPD mode	25	45	115	uA
I _{ccs}		Turbo mode	TBD	5	10	mA

^{1.} Sum of all current on VCC, VCCQ and VCC1 balls. CL = 0 pF.

10.2.3.2 3.3V Core, 1.8V I/O

Table 9: 3.3V Core, 1.8V I/O

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VCCQ	I/O power supply		1.65	1.8	1.95	V
VCC2	Internal supply		2.7	3.3	3.6	V
VCC	Device supply		2.7	3.3	3.6	٧
VCC1	Internal supply		NC	NC	NC	-
VIH	Input High-level Voltage		0.65* VCCQ		0.3+ VCCQ	٧
VIL	Input Low-level Voltage		-0.3		0.35* VCCQ	٧
II	Input Leakage Current	0≤VIN≤VCCQ	-10		10	uA
IOZ	Tri-State output leakage current	0≤VIN≤VCCQ	-10		10	uA
Vhys	Hysteresis	Schmidt trigger inputs	400			mV
VOH	High-level Output Voltage	IOH=4mA- 12mA	VCCQ- 0.45			V
VOL	Low-level Output Voltage	IOH=4mA- 12mA			0.45	V
PU	Pull up resistance		95	149	261	kΩ
PD	Pull down resistance		77	135	312	kΩ
Icc	Active supply current ¹	T=25C	20	30	60	mA
100	(cycle time = 60 ns)		_			
	Standby supply current ¹	DPD mode	25	45	130	uA
I _{CCS}		Turbo mode	TBD	5	10	uA

^{1.} Sum of all current on VCC, VCCQ and VCC1 balls. CL = 0 pF.

10.2.3.3 3.3V Core, 3.3V I/O

Table 10: 3.3V Core, 3.3V I/O

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VCCQ	I/O power supply		2.5	3.3	3.6	V
VCC2	Internal supply		2.7	3.3	3.6	V
VCC	Device supply		2.7	3.3	3.6	V
VCC1	Internal supply		NC	NC	NC	-
VIH	Input High-level Voltage		1.7		3.6	V
VIL	Input Low-level Voltage		-0.3		0.8	V
11	Input Leakage Current	0≤VIN≤VCCQ	-10		10	uA
IOZ	Tri-State output leakage current	0≤VIN≤VCCQ	-10		10	uA
Vhys	Hysteresis		400			mV
VOH	High-level Output Voltage	IOH=4mA- 12mA	2.4			V
VOL	Low-level Output Voltage	IOH=4mA- 12mA			0.4	V
PU	Pull up resistance		50	65	100	kΩ
PD	Pull down resistance		40	56	107	kΩ
loo	Active supply current ¹	T=25C	20	30	60	mA
Icc	(cycle time = 60 ns)					
ı	Standby supply current ¹	DPD mode	25	45	130	uA
I _{ccs}		Turbo mode	TBD	5	10	mA

^{1.} Sum of all current on VCC, VCCQ and VCC1 balls. CL = 0 pF.

10.2.4 Operating Conditions

Table 11: Operating Conditions

i	Parameter	1.8V	3.3V
Ambient tem	perature (TA)	-40°C to +85°C	-40°C to +85°C
Supply Voltage (VCCQ)		1.65V – 1.95V	2.5V - 3.6V
Input fall and rise time	CLK, OE#, WE#, CE#, SCS#, SI, SO, SCLK	3ns	3ns
	All other inputs	5ns	5ns
Input timing	level	VCCQ/2	VCCQ/2
Output timin	g level	VCCQ/2	VCCQ/2
Output Load			

Parameter	1.8V	3.3V
Push/Pull outputs	30pF	30pF

10.3 Timing Specifications

10.3.1 Standard Asynchronous Read Timing

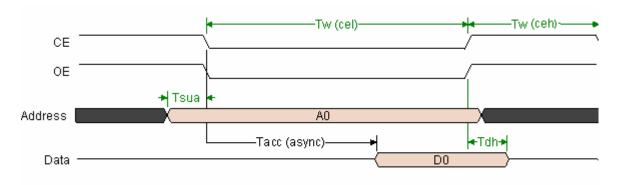


Figure 18: Standard Asynchronous Read Timing

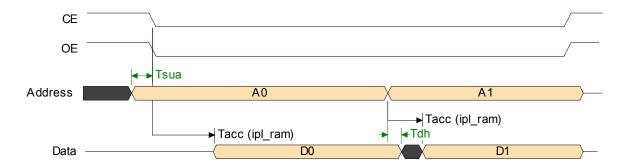


Figure 19: Standard Read Timing - Asynchronous Boot Mode

Table 12: Standard Asynchronous Read Timing Parameters

		1.8	1.8V 3.3V		3V	Units
Symbol	Description	Min	Max	Min	Max	Ullits
Tsua	Address setup time (Figure 18)	1		1		ns
Tsua	Address setup time (Figure 19) – Asynchronous boot mode	-2		-2		ns
Tacc(async)	Asynchronous access time (Registers)		17		14	ns
Tacc(ipl_ram)	RAM access time		24		22	ns
Tdh	Data hold time	1.5		1.5		ns
Tw(ceh)	CE# high pulse width	10		10		ns
Tw (cel)	CE# low pulse width	20		15		ns

10.3.2 Standard Asynchronous Write Timing

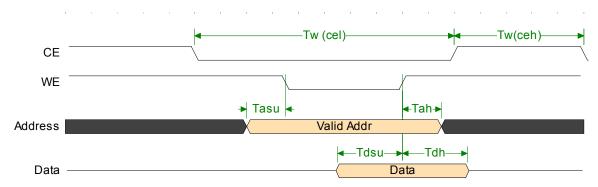


Figure 20: Standard Asynchronous Write Timing

Table 13: Standard Asynchronous Write Timing Parameters

		1.8V		3.3V		Units
Symbol	Description	Min	Max	Min	Max	Ullits
Tasu (regs)	Address setup (Registers)	1		1.2		ns
Tah	Address hold time	3		3		ns
Tdsu	Data setup	11		11		ns
Tdh	Data hold	0		0		ns
Tw(ceh)	WE# high pulse width	10		10		ns
Tw (cel)	WE# low pulse width	15		15		ns

10.3.3 Multiplexed Asynchronous Read Timing

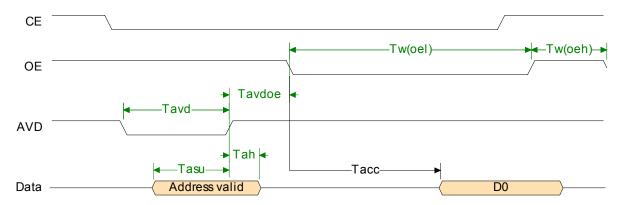


Figure 21: Multiplexed Asynchronous Read Timing Diagram

Table 14: Multiplexed Asynchronous Read Timing Parameters

		1.8V		3.3V		Units
Symbol	Description	Min	Max	Min	Max	Units
Tasu	Address setup	3		2		ns
Tah	Address hold	5		5		ns
Taccs	Access time		15		13	ns
Tdh	Data hold	1.5		1.4		ns
Tavd	AVD# pulse width	6		6		ns
Tw(oel)	OE# low pulse width	15		15		ns
Tw(oeh)	OE# high pulse width	10		10		ns
Tavdoe	AVD rising to OE falling	6		6		ns

10.3.4 Multiplexed Asynchronous Write Timing

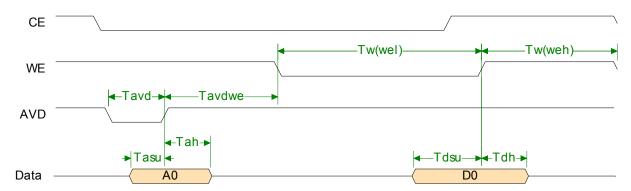


Figure 22: Multiplexed Asynchronous Write Timing Diagram

Table 15: Multiplexed Asynchronous Write Timing Parameters

		1.8V		3.3V		Units
Symbol	Description	Min	Max	Min	Max	Units
Tasu	Address setup	3		2		ns
Tah	Address hold	5		5		ns
Tdsu	Data setup time	12		11		ns
Tdh	Data hold	0		0		ns
Tavd	AVD# pulse width	6		6		ns
Tw(wel)	WE# low pulse width	15		15		ns
Tw(weh)	WE# high pulse width	5		5		ns
Tavdwe	AVD rising to WE falling	1		1		ns

10.3.5 Standard Burst Read Timing

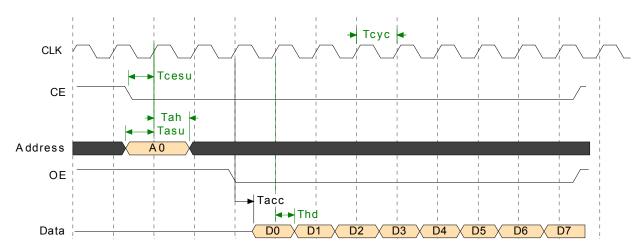


Figure 23: Standard Burst Read Timing Diagram

Table 16: Standard Burst Read Timing Parameters

		1.8V		3.3V		1111-
Symbol	Description	Min	Max	Min	Max	Units
Tasu	Address setup	4		4		ns
Tah	Address hold	2.5		2.5		ns
Tcesu	CE# setup	7		7		ns
Tacc	Access time		11.2		8.1	ns
Тсус	Burst clock cycle time	12.5		12.5		ns
Thd	Data hold time	2		2		ns

- 1. All timing specifications are with reference to the rising edge of the Burst clock.
- 2. Shown with the following Burst Mode Control Register (Read) parameters:
 - HOLD = 0
 - LENGTH = 8
 - LATENCY = 0
 - WAIT STATE = 0
- 3. This diagram is applicable only if working with continuous clock.

10.3.6 Standard Burst Write Timing

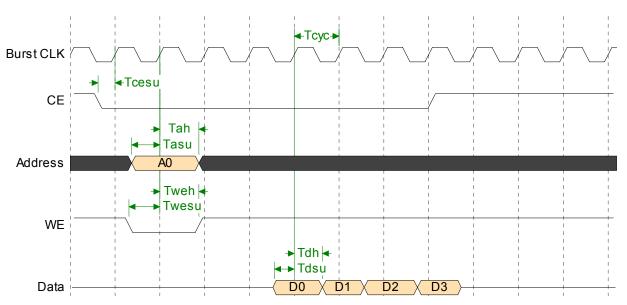


Figure 24: Standard Burst Write Timing Diagram

Table 17: Standard Burst Write Timing Parameters

		1.8V		3.3V		Units
Symbol	Description	Min	Max	Min	Max	Units
Tasu	Address setup	4		4		ns
Tah	Address hold	2.5		2.5		ns
Tcesu	CE# setup	7		7		ns
Twesu	WE# setup time	4		4		ns
Tweh	WE# hold time	5		5		ns
Тсус	Burst clock cycle time	12.5		12.5		ns
Tdsu	Data setup time	4		4		ns
Tdh	Data hold time	2.5		2.5		ns

- 1. All timing specifications are with reference to the rising edge of the Burst clock.
- 2. Shown with the following Burst Mode Control Register (Read) parameters:
 - HOLD = 0
 - LENGTH = 8
 - LATENCY = 0
 - WAIT STATE = 0
- 3. This diagram is applicable only if working with continuous clock.

10.3.7 Multiplexed Burst Read Timing

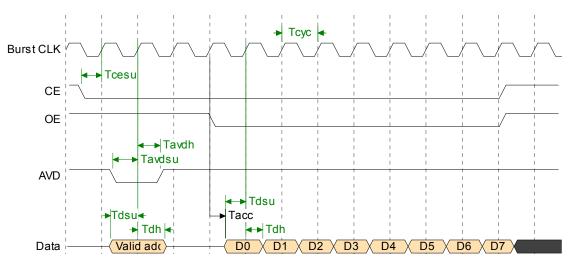


Figure 25: Multiplexed Burst Read Timing Diagram

Table 18: Multiplexed Burst Read Timing Parameters

		1.8V		3.3V		Units
Symbol	Description	Min	Max	Min	Max	Ullits
Tasu	Address setup	4		4		ns
Tah	Address hold	2.5		2.5		ns
Tcesu	CE setup	7		7		ns
Tacc	Access time		11		8	ns
Тсус	Burst clock cycle time	12.5		12.5		ns
Tdh	Data hold time	2		2		ns
Tavdsu	AVD setup time	7		7		ns
Tavdh	AVD hold time	1		1		ns

^{1.} All timing specifications are with reference to the rising edge of the Burst clock.

- HOLD = 0
- LENGTH = 8
- LATENCY = 1
- WAIT_STATE = 0

^{2.} Shown with the following Burst Mode Control Register (Read) parameters:

10.3.8 DMA Request Timing Diagram

10.3.8.1 Asynchronous Data Transfer

Table 19 lists DMA request timing parameters and Figure 26 shows the DMA request timing diagram in Asynchronous data transfer.

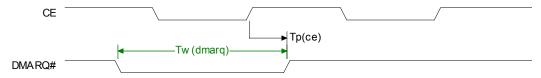


Figure 26: DMA Request Timing Diagram (Asynchronous Data Transfer)

Table 19: DMA Request Timing Parameters (Asynchronous data transfer)

		1.8V		3.3V		Units
Symbol	Description	Min	Max	Min	Max	Ullits
Tw(dmarq)	DMARQ# pulse width ¹	20		20		ns
Tp(ce)	CE to DMARQ# negation ²	19		16		ns

- 1. Applies to EDGE mode only. The DMARQ# pulse width can be configured by SW.
- 2. Applies to LEVEL mode only.

10.3.8.2 Synchronous Data Transfer

Table 20 lists DMA request timing parameters and Figure 27 shows the DMA request timing diagram in Synchronous data transfer.

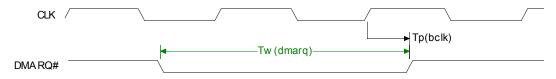


Figure 27: DMA request Timing Diagram (Synchronous Transfer)

Table 20: DMA Request Timing Parameters (Synchronous data transfer)

		1.8V		3.3V		Units
Symbol	Description	Min	Max	Min	Max	Units
Tw(dmarq)	DMARQ# pulse width ¹	20		20		ns
Tp(bclk)	CE to DMARQ# negation ²	17		13		ns

- Applies to EDGE mode only. The DMARQ# pulse width can be configured by SW. Timing is relative to the rising edge of CLK which samples CE# asserted.
- Applies to LEVEL mode only.

10.3.9 SPI Timing

Table 21 lists SPI slave timing parameters. Figure 28 and Figure 29 show the SPI slave timing diagram.

Symbol	Description	1.8	8V	3.3	3V	Unito	Notes
Symbol	Description	Min	Max	Min	Max	Units	notes
tw(SCLK1)	SCK high pulse width	15		15		ns	
tw(SCLK0)	SCK low pulse width	15		15		ns	
tcyc(SCLK)	SCK period	40		40		ns	
tsu(SI)	SI to SCLK setup	8		8		ns	
tho(SI)	SCLK to SI hold	8		8		ns	
tsu(SCS#)	SCS# to SCLK setup	8		8		ns	
tho(SCS#)	SCLK to SCS# hold	16		16		ns	
tw(SCS#1)	SCS# high pulse width	16		16		ns	
tp(SO1)	SCLK to SO ↑ delay		22		17	ns	
tp(SO0)	SCLK to SO ↓ delay		22		16	ns	
thiz(SO)	SCS# ↑ to SO Hi-Z		12		10	ns	

Table 21: Slave SPI Timing Parameters

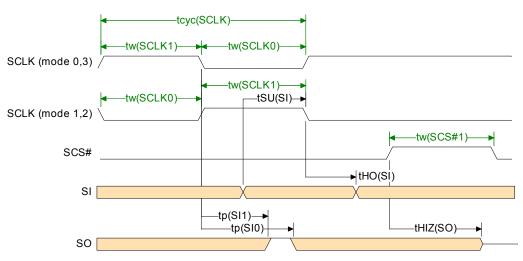


Figure 28: Slave SPI Data Timing

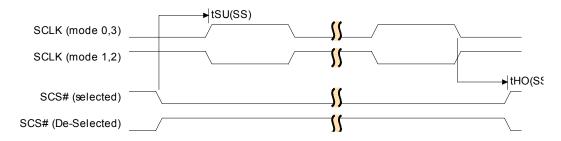


Figure 29: Slave SPI Control Timing

10.3.10 Power-Up Timing

mDOC H3 is reset by assertion of the RSTIN# input. When this signal is negated, mDOC H3 initiates a download procedure from the flash memory into the internal Programmable Boot Block. During this procedure, mDOC H3 does not respond to read or write access.

Host systems must therefore observe the requirements described below for initial access to mDOC H3. Any of the following methods may be employed to guarantee first-access timing requirements:

- Use a software loop to wait at least Tp (BUSY1) before accessing the device after the reset signal is negated.
- Poll the state of the BUSY# output.
- Poll the DOWNLOAD_RUN bit of the Download Status register until it returns 0. The DOWNLOAD_RUN bit will be 0 when BUSY# is negated. A0 must be pulled low in order to use this method.
- Use the BUSY# output to hold the host CPU in wait state before completing the first access which will be a RAM read cycle. The data will be valid when BUSY# is negated.

Hosts that use mDOC H3 to boot the system must employ the latter option or use another method to guarantee the required timing of initial access.

20

ns

Symbol	Description	Min	Max	Units
TREC (VCC-RSTIN)	VCC/VCCQ stable to RSTIN# ↑¹	500		us
Tw (RSTIN)	RSTIN# asserted pulse width	50		ns
TP (BUSY0)	RSTIN# ↓ to BUSY# ↓		50	ns
TP (BUSY1)	RSTIN# ↑ to BUSY# ↑⁵		50	ms
TP (VCC-BUSY0)	VCC/VCCQ stable to BUSY# ↓		500	us
Tsu (RSTIN-AVD) ²	RSTIN# ↑ to AVD# ↑2		3	μS
Tp (RSTIN-D) ³	RSTIN# ↑ to Data valid ³		3	μS

Table 22: Power-Up Timing Parameters

- 1. Specified from the final positive crossing of VCC/VCC1/VCC2/VCCQ minimum voltages.
- 2. Applies to multiplexed interface only.

Trise (RSTIN)

- 3. Applies to SRAM mode only.
- 4. The Typical download time of 2KB IPL code for customers migrating from DiskOnChip G3/G4/H1 is 20mS.

RSTIN# rise time5

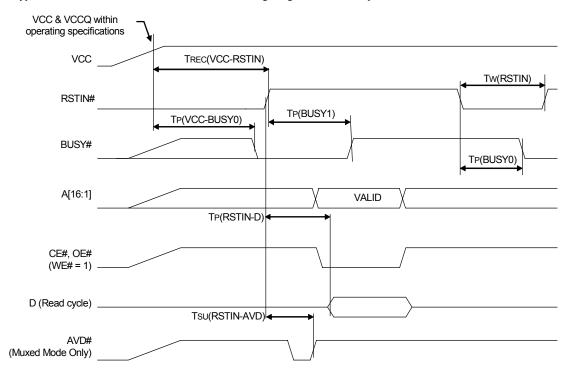


Figure 30: Reset Timing

10.4 Mechanical Dimensions

10.4.1 mDOC H3 1Gb (128MB)/2Gb (256MB)

FBGA 128MB (1Gb) dimensions: $9.0 \pm 0.20 \text{ mm x } 12.0 \pm 0.20 \text{ mm x } 1.1 \pm 0.1 \text{ mm}$

Ball pitch: 0.8 mm

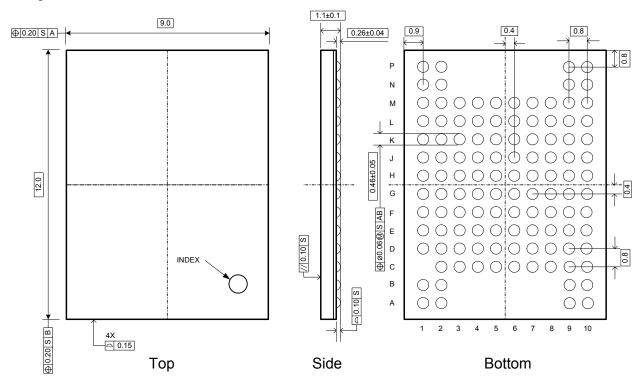


Figure 31: Mechanical Dimensions 9x12 FBGA Package

10.4.2 mDOC H3 4Gb (512MB)/8Gb (1GB)/ 16Gb (2GB)

FBGA dimensions: $12.0 \pm 0.20 \text{ mm x } 18.0 \pm 0.20 \text{ mm x } 1.3 \pm 0.1 \text{ mm}$

Ball pitch: 0.8 mm

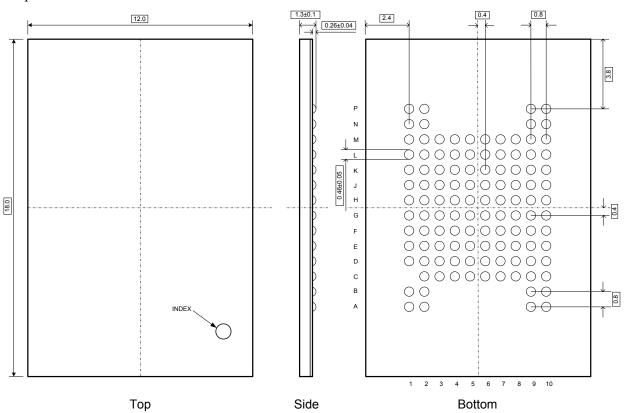


Figure 32: Mechanical Dimensions 12x18 FBGA Package

11. ORDERING INFORMATION

See Table 23 for mDOC H3 devices available and the associated order information.

Table 23: mDOC H3 Order information

Ordering Code	Capacity		Pack	200	Temperature
Ordering Code	MB	Mb	- Package		Range
MD2534-d1G-X-P	128	1024 (1Gbit)	9x12 BGA 115 balls	Pb-free	Extended
MD2534-d2G-X-P	256	2048 (2Gbit)	9x12 BGA 115 balls	Pb-free	Extended
MD2533-d8G-X-P	1024 (1GB)	8192 (8Gbit)	12x18 BGA 115 balls	Pb-free	Extended
MD2533-d16G-X-P	2048 (2GB)	16384 (16Gbit)	12x18 BGA 115 balls	Pb-free	Extended

How to Contact Us

USA

M-Systems, Inc. 555 North Mathilda Avenue, Suite 220 Sunnyvale, CA 94085

Phone: +1-408-470-4440 Fax: +1-408-470-4470

Japan

M-Systems Japan Inc. Asahi Seimei Gotanda Bldg., 3F 5-25-16 Higashi-Gotanda Shinagawa-ku Tokyo, 141-0022

Phone: +81-3-5423-8101 Fax: +81-3-5423-8102

Taiwan

M-Systems Asia Ltd. 14 F, No. 6, Sec. 3 Minquan East Road Taipei, Taiwan, 104 Tel: +886-2-2515-2522

Fax: +886-2-2515-2295

China

M-Systems China Ltd.
Room 121-122
Bldg. 2, International Commerce & Exhibition Ctr.
Hong Hua Rd.

Futian Free Trade Zone Shenzhen, China

Phone: +86-755-8348-5218 Fax: +86-755-8348-5418

Europe

M-Systems Ltd. 7 Atir Yeda St. Kfar Saba 44425, Israel Tel: +972-9-764-5000

Fax: +972-3-548-8666

Internet

http://www.m-systems.com/mobile

General Information

info@m-systems.com

Sales and Technical Information

techsupport@m-systems.com

This document is for information use only and is subject to change without prior notice. M-Systems Flash Disk Pioneers Ltd. assumes no responsibility for any errors that may appear in this document. No part of this document may be reproduced, transmitted, transcribed, stored in a retrievable manner or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without prior written consent of M-Systems.

M-Systems products are not warranted to operate without failure. Accordingly, in any use of the Product in life support systems or other applications where failure could cause injury or loss of life, the Product should only be incorporated in systems designed with appropriate and sufficient redundancy or backup features.

Contact your local M-Systems sales office or distributor, or visit our website at www.m-systems.com to obtain the latest specifications before placing your order.

© 2006 M-Systems Flash Disk Pioneers Ltd. All rights reserved.

M-Systems, DiskOnChip, DiskOnChip Millennium, DiskOnKey, DiskOnKey MyKey, FFD, Fly-By, iDiskOnChip, iDOC, mDiskOnChip, mDOC, Mobile DiskOnChip, Smart DiskOnKey, SmartCaps, SuperMAP, TrueFFS, uDiskOnChip, uDOC, and Xkey are trademarks or registered trademarks of M Systems Flash Disk Pioneers, Ltd. Other product names or service marks mentioned herein may be trademarks or registered trademarks of their respective owners and are hereby acknowledged. All specifications are subject to change without prior notice.