
LP8552

LP8552 High-Efficiency LED Backlight Driver for Notebooks

Literature Number: SNVS693

LP8552

High-Efficiency LED Backlight Driver for Notebooks

General Description

The LP8552 is a white LED driver with integrated boost converter. It has six adjustable current sinks which can be controlled by PWM input or with l^2C -compatible serial interface.

The boost converter has adaptive output voltage control based on the LED driver voltages. This feature minimizes the power consumption by adjusting the voltage to lowest sufficient level in all conditions.

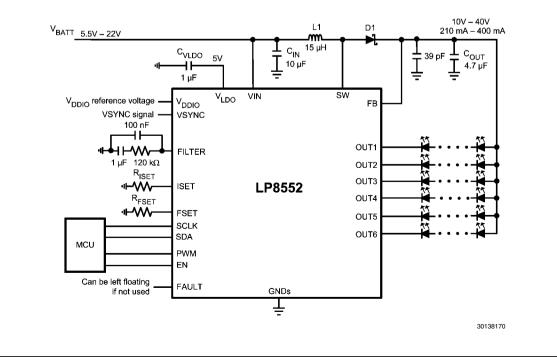
LED outputs have 8-bit current resolution and up to 13-bit PWM resolution with additional 1-3 bit dithering to achieve smooth and precise brightness control. Proprietary Phase Shift PWM control is used for LED outputs to reduce peak current from the boost converter, thus making the boost capacitors smaller. The Phase Shifting scheme also eliminates audible noise.

Automatic PWM dimming at lower brightness values and current dimming at higher brightness values can be used to improve the optical efficiency.

Internal EEPROM is used for storing the configuration data. This makes it possible to have minimum external component count and make the solution very small.

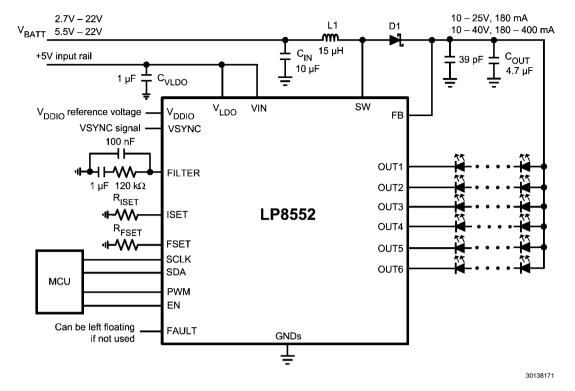
LP8552 has safety features which make it possible to detect LED outputs with open or short fault. As well low input voltage and boost over-current conditions are monitored and chip is turned off in case of these events. Thermal de-rating function prevents overheating of the device by reducing backlight brightness when set temperature has been reached.

LP8552 is available in National's micro SMD 25-bump package.

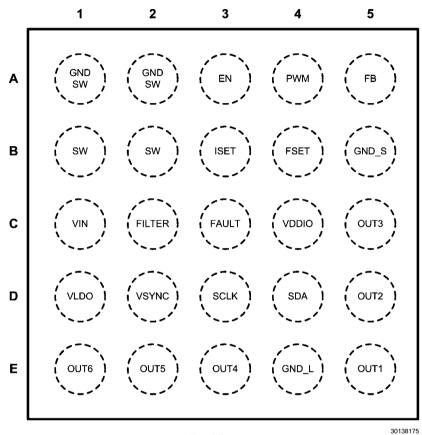

Features

- High-voltage DC/DC boost converter with integrated FET with four switching frequency options: 156/312/625/1250 kHz
- 2.7V 22V input voltage range to support 1x...5x cell Lilon batteries
- Programmable PWM resolution
 - 8 to 13 true bit (steady state)
 - Additional 1 to 3 bits using dithering during brightness changes
- I²C and PWM brightness control
- Automatic PWM & current dimming for improved efficiency
- PWM output frequency and LED current set through resistors
- Optional synchronization to display V_{SYNC} signal
- 6 LED outputs with LED fault (short/open) detection
- Low input voltage, over-temperature, over-current detection and shutdown
- Minimum number of external components
- Micro SMD 25-bump package, 2.466 x 2.466 x 0.6 mm

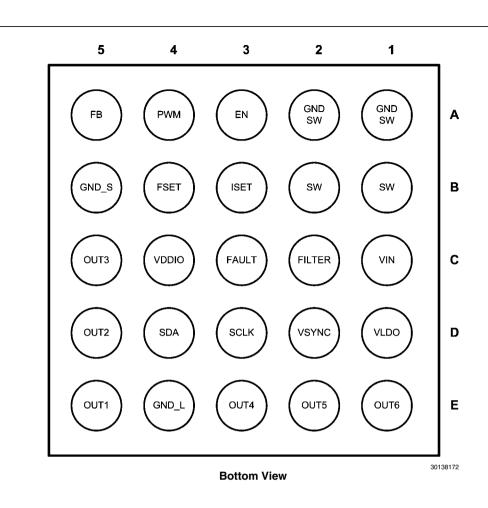
Applications


- Notebook and Netbook LCD Display LED Backlight
- LED Lighting

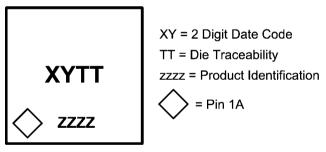
Typical Application for Low Input Voltage (2)


LP8552

Note: Separate 5V rail to V_{LDO} can be also used to improve efficiency for applications with higher battery voltage. No power sequencing requirements between V_{IN}/V_{LDO} and V_{BATT} .


Connection Diagrams and Package Mark Information

Micro SMD 25-Bump Package 2.466 x 2.466 x 0.6mm, 0.5 mm pitch NS Package Number TLA2511A



Top View

LP8552

Package Mark

Package Mark - Top View

30138180

Ordering Information

Order Number	Spec/flow	Package Marking	Supplied As
LP8552TLE	NoPB	8552	250 units, Tape-and-Reel
LP8552TLX	NoPB	8552	3000 units, Tape-and-Reel
LP8552TLE-E00	NoPB	52E0	250 units, Tape-and-Reel
LP8552TLX-E00	NoPB	52E0	3000 units, Tape-and-Reel

Pin #	Name	Туре	Description
A1	GND_SW	G	Boost switch ground
A2	GND_SW	G	Boost switch ground
A3	EN		Enable input pin
A4	PWM	A	PWM dimming input. This pin must be connected to GND if not used.
A5	FB	A	Boost feedback input
B1	SW	A	Boost switch
B2	SW	A	Boost switch
B3	ISET	A	Set resistor for LED current. This pin can be left floating if not used.
B4	FSET	A	PWM frequency set resistor. This pin can be left floating if not used.
B5	GND_S	G	Signal ground
C1	VIN	Р	Input power supply up to 22V. If 2.7V ≤ VBATT < 5.5V (<i>Typical Application for Log Input Voltage (2)</i>) then external 5V rail must be used for VLDO and VIN.
C2	FILTER	A	Low pass filter for PLL. This pin can be left floating if not used.
C3	FAULT	OD	Fault indication output. If not used, can be left floating.
C4	VDDIO	Р	Digital IO reference voltage (1.65V5V) for I ² C interface and PWM input.
C5	OUT3	A	Current sink output
D1	VLDO	Р	LDO output voltage. External 5V rail can be connected to this pin in low voltage application.
D2	VSYNC		V _{SYNC} input. This pin must be connected to GND if not used.
D3	SCLK		Serial clock. This pin must be connected to GND if not used.
D4	SDA	I/O	Serial data. This pin must be connected to GND if not used.
D5	OUT2	A	Current sink output
E1	OUT6	A	Current sink output
E2	OUT5	A	Current sink output
E3	OUT4	A	Current sink output
E4	GND_L	G	LED ground
E5	OUT1	A	Current sink output

A: Analog Pin, G: Ground Pin, P: Power Pin, I: Input Pin, I/O: Input/Output Pin, O: Output Pin, OD: Open Drain Pin

Absolute Maximum Ratings (Note 1, Note

2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _{IN}	-0.3V to +24.0V
V _{LDO}	-0.3V to +6.0V
Voltage on Logic Pins (VSYNC, PWM, EN, SCLK, SDA)	-0.3V to +6.0V
Voltage on Logic Pin (FAULT)	-0.3V to VDDIO + 0.3V
Voltage on Analog Pins (FILTER, VDDIO, ISET, FSET)	-0.3V to +6.0V
V (OUT1OUT6, SW, FB)	-0.3V to +44.0V
Continuous Power Dissipation (<i>Note 3</i>)	Internally Limited
Junction Temperature (T _{J-MAX})	125°C
Storage Temperature Range	-65°C to +150°C
Maximum Lead Temperature (Soldering)	(Note 4)
ESD Rating	(<i>Note 5</i>)
Human Body Model:	2 kV
Machine Model:	200V 1 kV
Charged Device Model:	IKV

Operating Ratings (Note 1, Note 2)

Input Voltage Range (V _{IN})	5.5V to 22V
typ. app. (1)	
Input Voltage Range (V _{IN} + V _{LDO})	4.5V to 5.5V
typ. app. (2)	
V _{DDIO}	1.65V to 5V
V(OUT1OUT6, SW, FB)	0V to 40V
Junction Temperature (T _J) Range	-30°C to +125°C
Ambient Temperature (T _A) Range	–30°C to +85°C
(Note 6)	

40 to 73°C/W

Thermal Properties

Junction-to-Ambient Thermal Resistance (θ_{JA}), TLA Package (*Note* 7)

Electrical Characteristics (Note 2, Note 8)

Limits in standard typeface are for $T_A = 25^{\circ}$ C. Limits in **boldface** type apply over the full operating junction temperature range (-30°C $\leq T_A \leq +85^{\circ}$ C). Unless otherwise specified: $V_{IN} = 12.0$ V, $V_{DDIO} = 2.8$ V, $C_{VLDO} = 1 \ \mu$ F, L1 = 15 μ H, $C_{IN} = 10 \ \mu$ F, $C_{OUT} = 10 \ \mu$ F. $R_{ISET} = 16 \ k\Omega$ (*Note 9*)

Symbol	Parameter	Condition	Min	Тур	Max	Units
	Standby Supply Current	Internal LDO disabled			1	μA
		EN=L and PWM=L				
I _{IN}	Normal Mode Supply Current	LDO enabled, boost enabled, no current going through LED outputs 5 MHz PLL Clock		3.0		
		10 MHz PLL Clock		3.7		mA
		20 MHz PLL Clock		4.7		
		40 MHz PLL Clock		6.7		
f _{osc}	Internal Oscillator Frequency		-4		+4	%
	Accuracy		-7		+7	70
V _{LDO}	Internal LDO Voltage		4.5	5.0	5.5	V
ILDO	Internal LDO External Loading				5.0	mA

Boost Converter Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
RDS _{ON}	Switch ON Resistance	I _{SW} = 0.5A		0.12		Ω
V _{MAX}	Boost Maximum Output Voltage			40		V
		$9.0V \leq V_{BATT}, V_{OUT} = 35V$		450		
I _{LOAD}	Maximum Continuous Load Current	$6.0V \leq V_{BATT}, V_{OUT} = 35V$		300		mA
		$3.0V \leq V_{BATT}, V_{OUT} = 25V$		180		
V _{OUT} /V _{IN}	Conversion Ratio	f _{SW} = 1.25 MHz			10	

Symbol	Parameter	Condition	Min	Тур	Мах	Units
f _{sw}		BOOST_FREQ = 00		156		
	Switching Frequency	BOOST_FREQ = 01		312		kHz
		BOOST_FREQ = 10		625		КПИ
		BOOST_FREQ = 11		1250		
V _{OV}	Over-voltage Protection Voltage			V _{BOOST} + 1.6V		V
t _{PULSE}	Switch Pulse Minimum Width	no load		50		ns
t _{STARTUP}	Startup Time	(Note 10)		6		ms
I _{MAX}	SW Pin Current Limit	BOOST_IMAX = 0		1.4		
		BOOST_IMAX = 1		2.5		A

LED Driver Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{LEAKAGE}	Leakage Current	Outputs OUT1OUT6, V _{OUT} = 40V		0.1	1	μA
1	Maximum Source Current	EN_I_RES = 0, CURRENT[7:0] = FFh		30		
IMAX	OUT1OUT6	EN_I_RES = 1, CURRENT[7:0] = FFh		50		mA
I _{OUT}	Output Current Accuracy (<i>Note 11</i>)	Output current set to 23 mA, EN_I_RES = 1	-3 -4		+3 +4	%
I _{MATCH}	Matching (<i>Note 11</i>)	Output current set to 23 mA, EN_I_RES = 1		0.5		%
		$f_{LED} = 5 \text{ kHz}, f_{PLL} = 5 \text{ MHz}$		10		
	PWM Output Resolution (<i>Note 14</i>)	f _{LED} = 10 kHz, f _{PLL} = 5 MHz		9		bits
		f _{LED} = 20 kHz, f _{PLL} = 5 MHz		8		
PWM _{RES}		$f_{LED} = 5 \text{ kHz}, f_{PLL} = 40 \text{ MHz}$		13		
		$f_{LED} = 10 \text{ kHz}, f_{PLL} = 40 \text{ MHz}$		12		
		$f_{LED} = 20 \text{ kHz}, f_{PLL} = 40 \text{ MHz}$		11		
f _{LED}	LED Switching Frequency (Note	PWM_FREQ[4:0] = 00000b PLL clock 5 MHz		600		
	14)	PWM_FREQ[4:0] = 11111b PLL clock 5 MHz		19.2k		- Hz
V	Caturation Maltana (Mats 10)	Output current set to 20 mA		105	220	
V _{SAT}	Saturation Voltage (Note 12)	Output current set to 30 mA		160	290	- mV

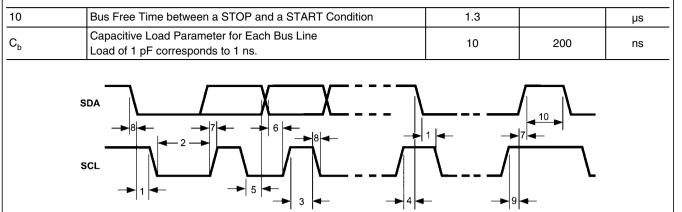
PWM Interface Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{PWM}	PWM Frequency Range		0.1		25	kHz
t _{MIN_ON}	Minimum Pulse ON time			1		
t _{MIN_OFF}	Minimum Pulse OFF time			1		μs
t _{STARTUP}	Turn on delay from standby to backlight on	PWM input active, EN pin rise from low to high		6		ms
T _{STBY}	Turn Off Delay	PWM input low time for turn off, slope disabled		50		ms
PWM _{RES}	PWM Input Resolution	f _{IN} < 9.0 kHz f _{IN} < 4.5 kHz f _{IN} < 2.2 kHz f _{IN} < 1.1 kHz		10 11 12 13		bits

Under-Voltage Protection

Symbol	Parameter	Condition	Min	Тур	Max
		UVLO[1:0] = 00		Disabled	
		UVLO[1:0] = 01, falling	2.55	2.70	2.94
		UVLO[1:0] = 01, rising	2.62	2.76	3.00
V _{UVLO}		UVLO[1:0] = 10, falling	5.11	5.40	5.68
		UVLO[1:0] = 10, rising	5.38	5.70	5.98
		UVLO[1:0] = 11, falling	7.75	8.10	8.45
		UVLO[1:0] = 11, rising	8.36	8.73	9.20

Units


V

Logic Interface Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
Logic In	put EN					
V _{IL}	Input Low Level				0.4	V
V _{IH}	Input High Level		1.2			V
l _i	Input Current		-1.0		1.0	μA
Logic In	put VSYNC	·	· · ·			
V _{IL}	Input Low Level				0.4	V
V _{IH}	Input High Level		2.2			۷
I _I	Input Current		-1.0		1.0	μA
f _{VSYNC}	Frequency Range		58	60	55000	Hz
Logic In	put PWM					
V _{IL}	Input Low Level				0.2xV _{DDIO}	V
V _{IH}	Input High Level		0.8xV _{DDIO}			V
I _I	Input Current		-1.0		1.0	μA
Logic In	puts SCL, SDA					
V _{IL}	Input Low Level				0.2xV _{DDIO}	V
V _{IH}	Input High Level		0.8xV _{DDIO}			٧
I _I	Input Current		-1.0		1.0	μA
Logic Ou	utputs SDA, FAULT					
V _{OL}	Output Low Level	I _{OUT} = 3 mA (pull-up current)		0.3	0.5	V
ΙL	Output Leakage Current	$V_{OUT} = 2.8V$	-1.0		1.0	μA

I²C Serial Bus Timing Parameters (SDA, SCLK) (Note 13)

Symbol	Parameter	Limi	Limit		
Symbol		Min	Max	– Units	
f _{SCLK}	Clock Frequency		400	kHz	
1	Hold Time (repeated) START Condition	0.6		μs	
2	Clock Low Time	1.3		μs	
3	Clock High Time	600		ns	
4	Setup Time for a Repeated START Condition	600		ns	
5	Data Hold Time	50		ns	
6	Data Setup Time	100		ns	
7	Rise Time of SDA and SCL	20+0.1C _b	300	ns	
8	Fall Time of SDA and SCL	15+0.1C _b	300	ns	
9	Set-up Time for STOP condition	600		ns	

30138198

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 2: All voltages are with respect to the potential at the GND pins.

Note 3: Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at $T_J = 150^{\circ}C$ (typ.) and disengages at $T_J = 130^{\circ}C$ (typ.).

Note 4: For detailed soldering specifications and information, please refer to National Semiconductor AN1112: *Micro SMD Wafer Level Chip Scale Package*. Note 5: Human Body Model, applicable standard JESD22-A114C. Machine Model, applicable standard JESD22-A115-A. Charged Device Model, applicable standard JESD22A-C101.

Note 6: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A-MAX}) is dependent on the maximum operating junction temperature $(T_{J-MAX-OP} = 125^{\circ}C)$, the maximum power dissipation of the device in the application (P_{D-MAX}) , and the junction-to ambient thermal resistance of the part/package in the application (θ_{JA}) , as given by the following equation: $T_{A-MAX} = T_{J-MAX-OP} - (\theta_{JA} \times P_{D-MAX})$.

Note 7: Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design.

Note 8: Min and Max limits are guaranteed by design, test, or statistical analysis. Typical numbers are not guaranteed, but do represent the most likely norm. Note 9: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.

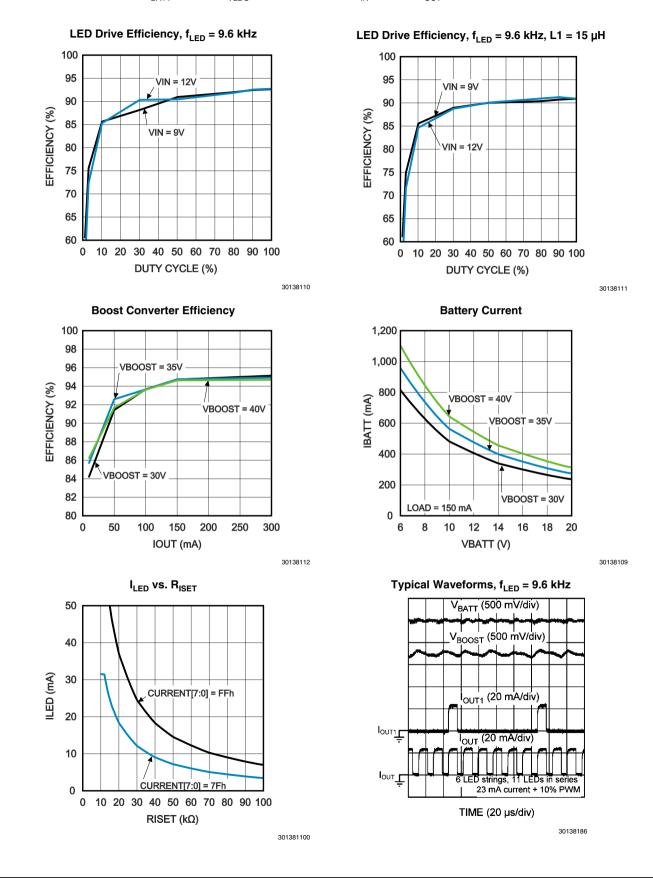
Note 10: Startup time is measured from the moment boost is activated until the V_{OUT} crosses 90% of its target value.

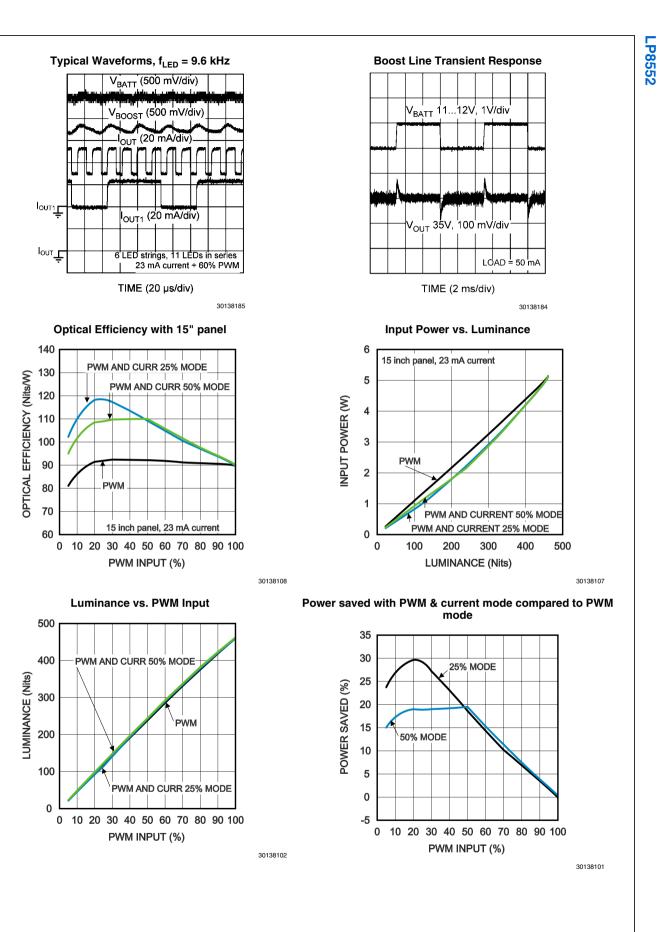
Note 11: Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current. Matching is the maximum difference from the average. For the constant current sinks on the part (OUT1 to OUT6), the following are determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG). Two matching numbers are calculated: (MAX-AVG)/AVG and (AVG-MIN/AVG). The largest number of the two (worst case) is considered the matching figure. The typical specification provided is the most likely norm of the matching figure for all parts. Note that some manufacturers have different definitions in use.

Note 12: Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1V.

Note 13: Guaranteed by design. $V_{DDIO} = 1.65V$ to 5.5V.

Note 14: PWM output resolution and frequency depend on the PLL settings. Please see section "PWM Frequency Settings" for full description


www.national.com



LP8552

Typical Performance Characteristics

Unless otherwise specified: V_{BATT} = 12.0V, C_{VLDO} = 1 μ F, L1 = 33 μ H, C_{IN} = 10 μ F, C_{OUT} = 10 μ F

-P8552

Modes of Operation

- **RESET:** In the RESET mode all the internal registers are reset to the default values. Reset is entered always when VLDO voltage is low. EN pin is enable for the internal LDO. Power On Reset (POR) will activate during the chip startup or when the supply voltage VLDO fall below POR level. Once VLDO rises above POR level, POR will inactivate and the chip will continue to the STANDBY mode.
- **STANDBY:** The STANDBY mode is entered if the register bit BL_CTL is LOW and external PWM input is not active and POR is not active. This is the low power consumption mode, when only internal 5V LDO is enabled. Registers can be written in this mode and the control bits are effective immediately after start up.
- **STARTUP:** When BL_CTL bit is written high or PWM signal is high, the INTERNAL STARTUP SEQUENCE powers up all the needed internal blocks (VREF, Bias, Oscillator etc.). Internal EPROM and EEPROM are read in this mode. To ensure the correct oscillator initialization etc., a 2 ms delay is generated by the internal-state machine. If the chip temperature rises too high, the Thermal Shutdown (TSD) disables the chip operation and STARTUP mode is entered until no thermal shutdown event is present.

BOOST STARTUP: Soft start for boost output is generated in the BOOST STARTUP mode. The boost output is raised in low current PWM mode during the 4 ms delay generated by the state-machine. All LED outputs are off during the 4 ms delay to ensure smooth startup. The Boost startup is entered from Internal Startup Sequence if EN_BOOST is HIGH.

NORMAL: During NORMAL mode the user controls the chip using the external PWM input or with Control Registers through I²C. The registers can be written in any sequence and any number of bits can be altered in a register in one write.

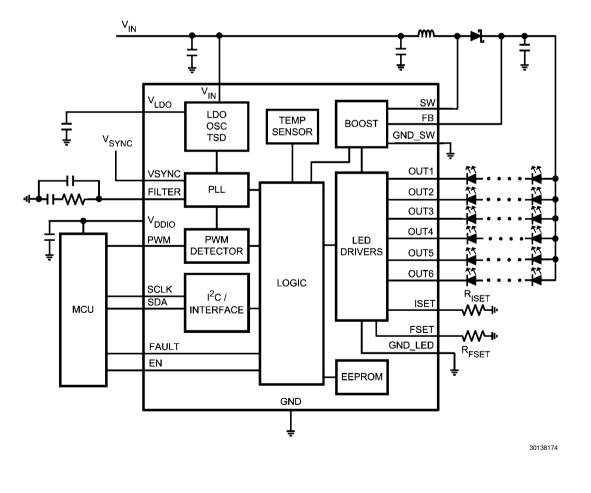
Functional Overview

LP8552 is a high-voltage LED driver for medium sized LCD backlight applications. It includes high-voltage boost converter. Boost voltage automatically sets to the correct level needed to drive the LED strings. This is done by monitoring LED output voltage drop in real time.

Six LED outputs are driven either with constant current sinks with PWM control or by controlling both PWM and current. Constant current value is set with EEPROM bits and with R_{ISET} resistor. Brightness (PWM) is controlled either with I²C register or with PWM input. PWM frequencies are set with EEPROM bits and with R_{FSET} resistor. Special Phase-Shift PWM mode can be used to reduce boost output current peak, thus reducing output ripple, capacitor size and audible noise. With LP8552 it is possible to synchronize the PWM output frequency to V_{SYNC} signal received from video processor. Internal PLL ensures that the PWM output clock is always synchronized to the V_{SYNC} signal.

Special dithering mode makes it possible to increase output resolution during fading between two brightness values and by this making the transition look very smooth with virtually no stepping. Transition slope time can be adjusted with EEPROM bits.

Safety features include LED fault detection with open and short detection. LED fault detection will prevent system over-


Block Diagram

heating in case of open in some of the LED strings. Chip internal temperature is constantly monitored and based on this LP8552 can reduce the brightness of the backlight to reduce thermal loading once certain trip point is reached. Threshold is programmable in EEPROM. If chip internal temperature reaches too high, the boost converter and LED outputs are completely turned off until the internal temperature has reached acceptable level. Boost converter is protected against too high load current and over-voltage. LP8552 notifies the system about the fault through I²C register and with FAULT pin.

EEPROM programmable functions include:

- PWM frequencies
- Phase shift PWM mode
- LED constant current
- Boost output frequency
- Temperature thresholds
- Slope for brightness changes
- Dithering options
- PWM output resolution
- Boost control bits

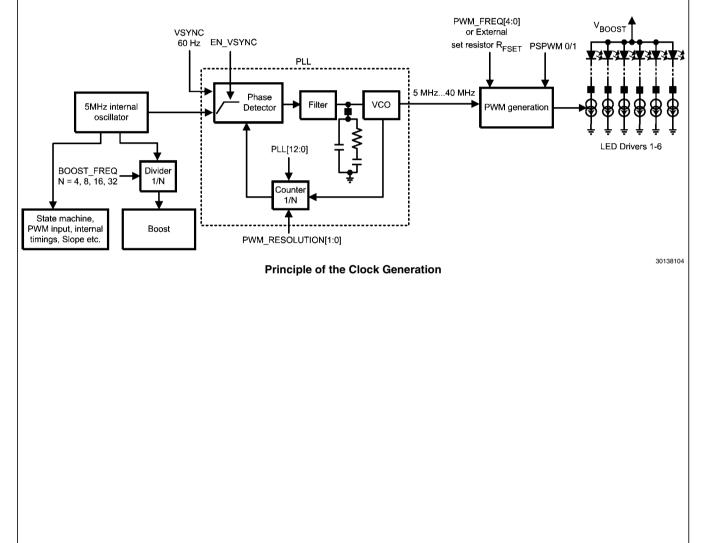
External components R_{ISET} and R_{FSET} can also be used for selecting the output current and PWM frequencies.

www.national.com

Clock Generation

LP8552 has an internal 5 MHz oscillator which is used for clocking the boost converter, state machine, PWM input duty cycle measurement, internal timings such as slope time for output brightness changes.

The internal clock can be used for generating the PWM output frequency. In this case the 5 MHz clock can be multiplied with the internal PLL to achieve higher resolution. The higher the clock frequency for PWM generation block, the higher the resolution; however, the tradeoff is higher I_Q of the part. Clock multiplication is set with <PWM_RESOLUTION[1:0]> EEP-ROM Bits.


The PLL can also be used for generating the required PWM generation clock from the V_{SYNC} signal. This makes sure that the LED output PWM is always synchronized to the V_{SYNC} signal and there is no clock variation between LCD display

video update and the LED backlight output frequency. Also $\rm H_{SYNC}$ signal up to 55 kHz can be used.

PLL has an internal counter which has 13-bit control <PLL [12:0]> to achieve correct output clock frequency based on the $V_{\rm SYNC}$ frequency.

For the PLL it can take couple of seconds to synchronize to 60 Hz V_{SYNC} signal in startup before this correct PWM clock frequency is generated from internal oscillator. FILTER pin component selection affects the time it takes from the PLL to lock to V_{SYNC} signal.

Special logic is implemented for allowing steady clock frequency even if there are missing V_{SYNC} pulses. In case pulses are randomly left out, the LP8552 can generate the pulses internally while keeping the same PWM output frequency. When V_{SYNC} pulses are available again, the internal logic will automatically switch to the external V_{SYNC} clock without glitch.

Brightness Control Methods

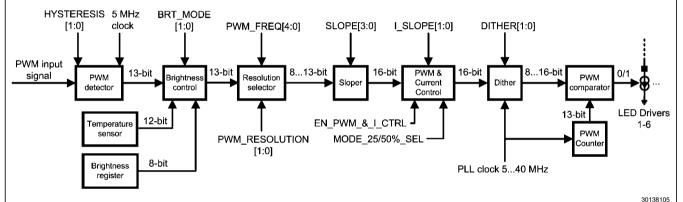
LP8552 controls the brightness of the backlight with PWM. PWM control is received either from PWM input pin or from I²C register bits. The PWM source selection is done with <BRT_MODE[1:0]> bits as follows:

BRT_MODE [1]	BRT_MODE [0]	PWM source
0	0	PWM input pin duty
		cycle control. Default.
0	1	PWM input pin duty
		cycle control.
1	0	Brightness register
1	1	PWM direct control
		(PWM in = PWM out)

PWM INPUT DUTY CYCLE

With PWM input pin duty cycle control the output PWM is controlled by PWM input duty cycle. PWM detector block measures the duty cycle in the PWM pin and uses this 13-bit value to generate the output PWM. Output PWM can have different frequency than input in this mode, and also phase shift PWM mode can be used. Slope and dither are effective in this mode. PWM input resolution is defined by the input PWM clock frequency.

BRIGHTNESS REGISTER CONTROL


With brightness register control the output PWM is controlled with 8-bit resolution <BRT7:0> register bits. Phase shift scheme can be used with this, and the output PWM frequency can be freely selected. Slope and dither are effective in this mode.

PWM DIRECT CONTROL

With PWM direct control the output PWM will directly follow the input PWM. Due to the internal logic structure the input is anyway clocked with the 5 MHz clock or the PLL clock. PSP-WM mode is not possible in this mode. Slope and dither are not effective in this mode.

PWM CALCULATION DATA FLOW

Below is a flow chart of the PWM calculation data flow. In PWM direct control mode most of the blocks are bypassed and this flow chart does not apply.

PWM DETECTOR

PWM detector block measures the duty cycle of the input PWM signal. Resolution depends on the input signal frequency. Hysteresis selection sets the minimum allowable change to the input. If smaller change is detected, it is ignored. With hysteresis the constant changing between two brightness values is avoided if there is small jitter in the input signal.

BRIGHTNESS CONTROL

Brightness control block gets 13-bit value from the PWM detector, 12-bit value from the temperature sensor as well as 8bit value from the brightness register. <BRT_MODE[1:0]> selects whether to use PWM input duty cycle value or the brightness register value as described earlier. Based on the temperature sensor value the duty cycle is reduced if the temperature has reached the temperature limit set to the <TEMP_LIM[1:0]> EEPROM bits.

RESOLUTION SELECTOR

Resolution selector takes the necessary MSB bits from the input data to match the output resolution. For example, if 11-bit resolution is used for output, then 11 MSB bits are selected from the input. Dither bits are not taken into account for the output resolution. This is to make sure that in steady state condition, there is no dithering used for the output.

PWM Calculation Data Flow SLOPER

Sloper makes the smooth transition from one brightness value to another. Slope time can be adjusted from 0 to 500 ms with <SLOPE[3:0]> EEPROM bits. The sloper output is 16-bit value.

PWM & CURRENT CONTROL

Automatic PWM & current control improves the optical efficiency of the LEDs by using PWM control with small brightness values and current control with bigger values. <EN_PWM_&_I_CTRL > EEPROM bit selects whether the PWM & current control is used instead of PWM control or not. PWM to current dimming switch point can be set to 25% or 50% of the brightness range with <MODE_25/50_SEL> EEP-ROM bit. Current slope can be adjusted by using the <I_SLOPE[1:0]> EEPROM bits.

DITHER

With dithering the output resolution can be "artificially" increased during sloping from one brightness value to another. This way the brightness change steps are not visible to eye. Dithering can be from 0 to 3 bits, and is selected with <DITHER[1:0]> EEPROM bits.

PWM COMPARATOR

The PWM counter clocks the PWM comparator based on the duty-cycle value received from Dither block. Output of the

PWM comparator controls directly the LED drivers. If PSPWM mode is used, then the signal to each LED output is delayed certain amount.

CURRENT SETTING

Maximum current of the LED outputs is controlled with CUR-RENT[7:0] EEPROM register bits linearly from 0 to 30 mA. If <EN_I_RES> = 1 the maximum LED output current can be scaled also with external resistor, R_{ISET}. R_{ISET} controls the LED current as follows:

$$I_{LED} = \frac{600 * 1.23V}{R_{ISET}} * \frac{CURRENT [7:0]}{255}$$

Default value for CURRENT[7:0] = 7Fh (127d). Therefore, the output current can be calculated as follows:

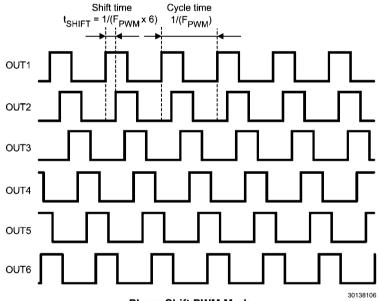
$$R_{ISET} = \frac{600 * 1.23}{I_{IED}} * \frac{1}{2} = \frac{369}{I_{IED}}$$

E.g., If 16 k Ω R_{ISET} resistor is used, then the LED maximum current is 23 mA. Note: formula is only approximation for the actual current.

PWM FREQUENCY SETTING

PWM frequency is selected with PWM_FREQ[4:0] EEPROM register. If PLL clock frequency multiplication is used, it will affect the output PWM frequency as well. <PWM_RESOLUTION[1:0]> EEPROM bits will select the PLL output frequency and hence the PWM frequency and resolution. Below are listed PWM frequencies with <EN_VSYNC]> = 0. PWM resolution setting affects the PLL clock frequency (5 MHz...40 MHz). Highlighted frequencies with boldface can be selected also with external resistor R_{FSET} . To activate R_{FSET} frequency selection the <EN_F_RES> EEPROM bit must be 1.

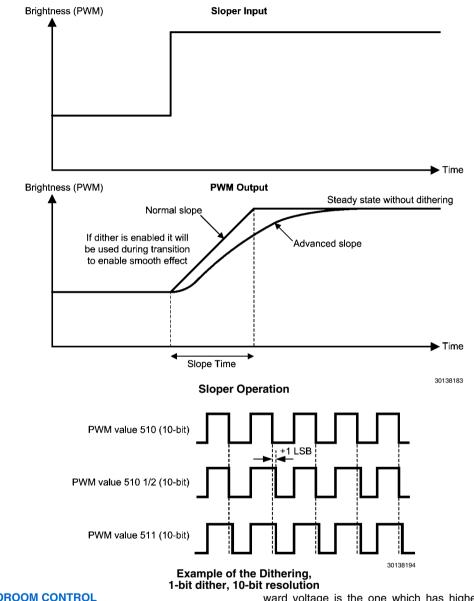
PWM_RES[1:0]	00	01	10	11	
PWM_FREQ[4:0]	5 MHz	10 MHz	20 MHz	40 MHz	Resolution (bits)
11111	19232	-	-	-	8
11110	16828	-	-	-	8
11101	14424	-	-	-	8
11100	12020	-	-	-	8
11011	9616	19232	-	-	9
11010	7963	15927	-	-	9
11001	6386	12771	-	-	9
11000	4808	9616	19232	-	10
10111	4658	9316	18631	-	10
10110	4508	9015	18030	-	10
10101	4357	8715	17429	-	10
10100	4207	8414	16828	-	10
10011	4057	8114	16227	-	10
10010	3907	7813	15626	-	10
10001	3756	7513	15025	-	10
10000	3606	7212	14424	-	10
01111	3456	6912	13823	-	10
01110	3306	6611	13222	-	10
01101	3155	6311	12621	-	10
01100	3005	6010	12020	-	10
01011	2855	5710	11419	-	10
01010	2705	5409	10818	-	10
01001	2554	5109	10217	-	10
01000	2404	4808	9616	19232	11
00111	2179	4357	8715	17429	11
00110	1953	3907	7813	15626	11
00101	1728	3456	6912	13823	11
00100	1503	3005	6010	12020	11
00011	1202	2404	4808	9616	12
00010	1052	2104	4207	8414	12
00001	826	1653	3306	6611	12
00000	601	1202	2404	4808	13


 $\mathsf{R}_{\mathsf{FSET}}$ resistance values with corresponding PWM frequencies:

PWM_RES[1:0]	00)	01		10		11	
RFSET (kΩ)	5 MHz Clock	Resolution	10 MHz Clock	Resolution	20 MHz Clock	Resolution	40 MHz Clock	Resolution
1015	19232	8	19232	9	19232	10	19232	11
2629	16828	8	15927	9	16227	10	17429	11
3641	14424	8	12771	9	14424	10	15626	11
5060	12020	8	9616	10	12020	10	12020	11
85100	9616	9	8715	10	9616	11	9616	12
135150	7963	9	7813	10	7813	11	8414	12
200300	6386	9	6311	10	6010	11	6811	12
450	4808	10	4808	11	4808	12	4808	13

PHASE SHIFT PWM SCHEME

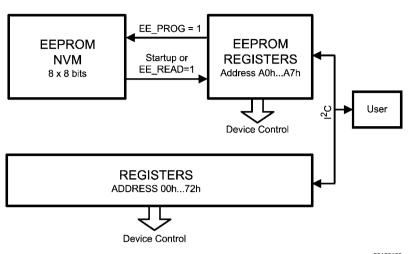
Phase shift PWM scheme allows delaying the time when each LED output is active. When the LED output are not activated simultaneously, the peak load current from the boost output is greatly decreased. This reduces the ripple seen on the boost output and allows smaller output capacitors. Reduced ripple also reduces the output ceramic capacitor audible ring-ing. PSPWM scheme also increases the load frequency seen


on boost output by x6 and thus transfers the possible audible noise to so high frequency that human ear cannot hear it. Description of the PSPWM mode is seen on the following diagram. PSPWM mode is enabled by setting <EN_PSPWM> EEPROM bit to 1. Shift time is the delay between outputs and it is defined as 1 / (f_{PWM} x 6). If the <EN_PSPWM> bit is 0, then the delay is 0 and all outputs are active simultaneously.

Phase Shift PWM Mode

SLOPE AND DITHERING

During transition between two brightness (PWM) values special dithering scheme is used if the slope is enabled. It allows increased resolution and smaller average steps size. Dithering is not used in steady-state condition. Slope time can be programmed with EEPROM bits <SLOPE[3:0]> from 0 to 500 ms. Same slope time is used for sloping up and down. Advanced slope makes brightness changes smooth for the eye. Dithering can be programmed with EEPROM bits <DITHER [1:0]> from 0 to 3 bits. Example below is for 1-bit dithering; e.g. for 3-bit dithering, every 8th pulse is made 1 LSB longer to increase the average value by 1/8 of LSB.

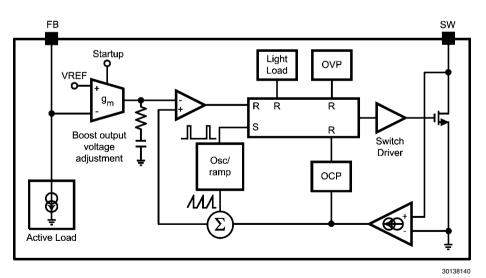


DRIVER HEADROOM CONTROL

Driver headroom can be controlled with <DRV_HEADR[2:0]> EEPROM bits. Driver headroom control sets the minimum threshold for the voltage over the LED output which has the smallest driver headroom and controls the boost output voltage accordingly. Boost output voltage step size is 125 mV. The LED output which has the smallest forward voltage is the one which has highest V_F across the LEDs. The strings with highest forward voltage is detected automatically. To achieve best possible efficiency smallest possible headroom voltage should be selected. If there is high variation between LED strings, the headroom can be raised slightly to prevent any visual artifacts.

EEPROM

EEPROM memory stores various parameters for chip control. The 64-bit EEPROM memory is organized as 8 x 8 bits. The EEPROM structure consists of a register front-end and the non-volatile memory (NVM). Register data can be read and written through the serial interface, and data will be effective immediately. To read and program NVM, separate commands need to be sent. Erase and program voltages are generated on-chip charge pump; no other voltages than normal input voltage are required. A complete EEPROM memory map is shown in the chapter LP8552 EEPROM Memory Map.


Boost Converter

OPERATION

The LP8552 boost DC/DC converter generates a 10...40V supply voltage for the LEDs from 2.7...22V input voltage. The output voltage can be controlled either with EEPROM register bits <VBOOST[4:0]>, or automatic adaptive voltage control can be used. The converter is a magnetic-switching PWM mode DC/DC converter with a current limit. The topology of the magnetic boost converter is called CPM (current programmed mode) control, where the inductor current is measured and controlled with the feedback. Switching frequency is selectable between 156 kHz and 1.25 MHz with EEPROM

bit <BOOST_FREQ[1:0]>. When <EN_BOOST> EEPROM register bit is set to 1, then boost will activate automatically when backlight is enabled.

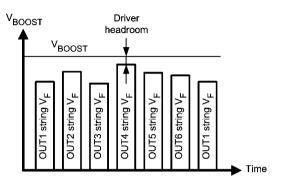
In adaptive mode the boost output voltage is adjusted automatically based on LED driver headroom voltage. Boost output voltage control step size is in this case 125 mV to ensure as small as possible driver headroom and high efficiency. Enabling the adaptive mode is done with <EN_ADAPT> EEP-ROM bit. If boost is started with adaptive mode enabled, then the initial boost output voltage value is defined with the <VBOOST[4:0]> EEPROM register bits in order to eliminate long output voltage iteration time when boost is started for the first time. The following figure shows the boost topology with the protection circuitry:

-P8552

PROTECTION

Three different protection schemes are implemented:

- 1. Over-voltage protection, limits the maximum output voltage.
 - Over-voltage protection limit changes dynamically based on output voltage setting.
 - Keeps the output below breakdown voltage
 - Prevents boost operation if battery voltage is much higher than desired output.
- 2. Over-current protection, limits the maximum inductor current.
- 3. Duty cycle limiting.


MANUAL OUTPUT VOLTAGE CONTROL

User can control the boost output voltage with <VBOOST[4:0] > EEPROM register bits when adaptive mode is disabled.

VBOOS	T[4:0]	Voltage (typical)
Bin	Dec	Volts
00000	0	10
00001	1	11
00010	2	12
00011	3	13
00100	4	14
11101	29	39
11110	30	40
11111	31	40

ADAPTIVE BOOST CONTROL

Adaptive boost control function adjusts the boost output voltage to the minimum sufficient voltage for proper LED driver operation. The output with highest V_F LED string is detected and boost output voltage adjusted accordingly. Driver headroom can be adjusted with <DRIVER_HEADR[2:0]> EEP-ROM bits from ~300 mV to 1200 mV. Boost adaptive control voltage step size is 125 mV. Boost adaptive control operates similarly with and without PSPWM.

Boost Adaptive Control Principle with PSPWM

Fault Detection

LP8552 has fault detection for LED fault, low-battery voltage, over-current and thermal shutdown. The open drain output pin (FAULT) can be used to indicate occurred fault. The cause for the fault can be read from status register. Reading the fault register will also reset the fault. Setting the EN pin low will also reset the faults, even if an external 5V line is used to power VLDO pin.

LED FAULT DETECTION

With LED fault detection, the voltages across the LED drivers are constantly monitored. Shorted or open LED string is detected.

If LED fault is detected:

- The corresponding LED string is taken out of boost adaptive control loop;
- Fault bits are set in the fault register to identify whether the fault has been open/short and how many strings are faulty; and
- Fault open-drain pin is pulled down.

LED fault sensitivity can be adjusted with <LED_FAULT_THR> EEPROM bit which sets the allowable variation between LED output voltage to 3.3V or 5.3V. Depending on application, and how much variation there can be in normal operation between LED string forward voltages, this setting can be adjusted.

Fault is cleared by setting EN pin low or by reading the fault register.

By default the LED fault detection is active only in automatic PWM & current dimming mode. If LED fault detection is needed in PWM dimming mode, please contact National representative for guidance.

UNDER-VOLTAGE DETECTION

LP8552 has detection for too-low VIN voltage. Threshold level for the voltage is set with EEPROM register bits as seen in the following table:

UVLO[1:0]	Threshold (V)
00	OFF
01	2.7V
10	5.4V
11	8.1V

When under-voltage is detected the LED outputs and boost will shutdown, FAULT pin is pulled down and corresponding fault bit is set in fault register. LEDs and boost will start again when the voltage has increased above the threshold level. Hysteresis is implemented to threshold level to avoid continuous triggering of fault when threshold is reached.

Fault is cleared by setting EN pin low or by reading the fault register.

OVER-CURRENT PROTECTION

LP8552 has detection for too-high loading on the boost converter. When over-current fault is detected, the LP8552 will shut down.

Fault is cleared by setting EN pin low or by reading the fault register.

DEVICE THERMAL REGULATION

LP8552 has an internal temperature sensor which can be used to measure the junction temperature of the device and protect the device from overheating. During thermal regulation, LED PWM is reduced by 2% of full scale per °C whenever the temperature threshold is reached. Temperature regulation is enabled automatically when chip is enabled. 11-bit temperature value can be read from Temp MSB and Temp LSB registers; MSB should be read first. Temperature limit can be programmed in EEPROM as shown in the following table.

Thermal regulation function does not generate fault signal.

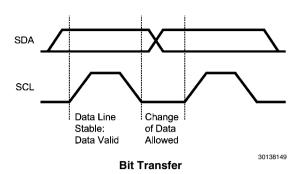
TEMP_LIM[1:0]	Over-Temp Limit (°C)
00	OFF
01	110
10	120
11	130

THERMAL SHUTDOWN

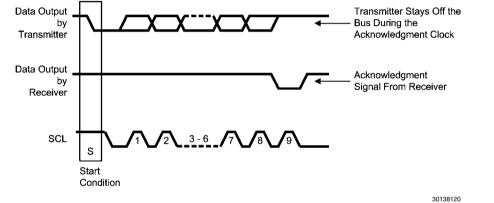
If the LP8552 reaches thermal shutdown temperature (150° C) the LED outputs and boost will shut down to protect it from damage. Also, the fault pin will be pulled down to indicate the fault state. Device will activate again when temperature drops below 130°C degrees.

Fault is cleared by setting EN pin low or by reading the fault register.

I²C Compatible Serial Bus Interface

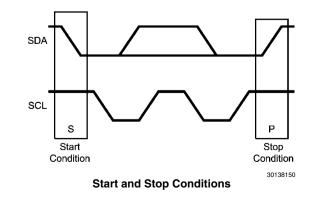

INTERFACE BUS OVERVIEW

The I²C-compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected to the bus. The two interface lines are the Serial Data Line (SDA) and the Serial Clock Line (SCLK). These lines should be connected to a positive supply, via a pull-up resistor and remain HIGH even when the bus is idle.


Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the SCLK. The LP8552 is always a slave device.

DATA TRANSACTIONS

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock SCLK. Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line during the high state of the SCLK and in the middle of a transaction, aborts the current transaction. New data should be sent during the low SCLK state. This protocol permits a single data line to transfer both command/control information and data using the synchronous serial clock.



Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following sections provide further details of this process.

Start and Stop

The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start Condition is generated, the bus is considered busy, and it retains this status until a certain time after a Stop Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCLK) is high indicates a Start Condition. A low-to-high transition of the SDA line while the SCLK is high indicates a Stop Condition.

In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction. This allows another device to be accessed, or a register read cycle.

ACKNOWLEDGE CYCLE

The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte transferred, and the acknowledge signal sent by the receiving device.

The master generates the acknowledge clock pulse on the ninth clock pulse of the byte transfer. The transmitter releases the SDA line (permits it to go high) to allow the receiver to send the acknowledge signal. The receiver must pull down the SDA line during the acknowledge clock pulse and ensure that SDA remains low during the high period of the clock pulse, thus signaling the correct reception of the last data byte and its readiness to receive the next byte.

"ACKNOWLEDGE AFTER EVERY BYTE" RULE

The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge signal after every byte received.

There is one exception to the "acknowledge after every byte" rule. When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

ADDRESSING TRANSFER FORMATS

Each device on the bus has a unique slave address. The LP8552 operates as a slave device with 7-bit address combined with data direction bit. Slave address is 2Ch as 7-bit or 58h for write and 59h for read in 8-bit format.

Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device should send an acknowledge signal on the SDA line, once it recognizes its address.

The slave address is the first seven bits after a Start Condition. The direction of the data transfer (R/W) depends on the bit sent after the slave address — the eighth bit.

When the slave address is sent, each device in the system compares this slave address with its own. If there is a match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.

I²C Chip Address

LSB
R/W bit0
30138151

Control Register Write Cycle

- Master device generates start condition.
- Master device sends slave address (7 bits) and the data direction bit (r/w = 0).
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- Master sends data byte to be written to the addressed register.
- Slave sends acknowledge signal.
- If master will send further data bytes the control register address will be incremented by one after acknowledge signal.
- Write cycle ends when the master creates stop condition.

Control Register Read Cycle

- Master device generates a start condition.
- Master device sends slave address (7 bits) and the data direction bit (r/w = 0).
- Slave device sends acknowledge signal if the slave address is correct.
- Master sends control register address (8 bits).
- Slave sends acknowledge signal.
- Master device generates repeated start condition.
- Master sends the slave address (7 bits) and the data direction bit (r/w = 1).
- Slave sends acknowledge signal if the slave address is correct.
- · Slave sends data byte from addressed register.
- If the master device sends acknowledge signal, the control register address will be incremented by one. Slave device sends data byte from addressed register.
- Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop condition.

Data Read and Write Cycles

	Address Mode
	<start condition=""></start>
	<slave address=""><r w="0">[Ack]</r></slave>
	<register addr.="">[Ack]</register>
	<repeated condition="" start=""></repeated>
Data Read	<slave address=""><r w="1">[Ack]</r></slave>
	[Register Data] <ack nack="" or=""></ack>
	additional reads from subsequent
	register address possible
	<stop condition=""></stop>
	<start condition=""></start>
	<slave address=""><r w="0">[Ack]</r></slave>
	<register addr.="">[Ack]</register>
Data Write	<register data="">[Ack]</register>
	additional writes to subsequent
	register address possible
	<stop condition=""></stop>

<>Data from master [] Data from slave

Register Read and Write Detail Slave Address Control Register Add Register Data S '0' Α (7 bits) (8 bits) (8 bits) Data transfered, byte + Ack R/W From Slave to Master A - ACKNOWLEDGE (SDA Low) S - START CONDITION From Master to Slave P - STOP CONDITION **Register Write Format** 30138147 Slave Address Control Register Add Slave Address Data- Data '0' А A '1 S (7 bits) (8 bits) (7 bits) (8 bits) Data transfered, byte R/W R/W Ack/NAck Direction of the transfer will change at this point From Slave to Master A - ACKNOWLEDGE (SDA Low) NA - ACKNOWLEDGE (SDA High) From Master to Slave S - START CONDITION Sr - REPEATED START CONDITION P - STOP CONDITION **Register Read Format** 30138195

Recommended External Components INDUCTOR SELECTION

There are two main considerations when choosing an inductor; the inductor should not saturate, and the inductor current ripple should be small enough to achieve the desired output voltage ripple. Different saturation current rating specifications are followed by different manufacturers so attention must be given to details. Saturation current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of application should be requested from the manufacturer. Shielded inductors radiate less noise and should be preferred.

The saturation current should be greater than the sum of the maximum load current and the worst case average to peak inductor current.

The equation below shows the worst case conditions.

$$I_{SAT} > \frac{I_{OUTMAX}}{D'} + I_{RIPPLE}$$

Where $I_{RIPPLE} = \frac{(V_{OUT} - V_{IN})}{(2 \times L \times f)} \times \frac{V_{IN}}{V_{OUT}}$
Where $D = \frac{(V_{OUT} - V_{IN})}{(V_{OUT})}$ and $D' = (1 - D)$

- IRIPPLE: Average to peak inductor current
- IOUTMAX: Maximum load current
- VIN: Maximum input voltage in application
- L: Min inductor value including worst case tolerances
- f: Minimum switching frequency
- D: Duty cycle for CCM Operation
- V_{OUT}: Output voltage
- Example using above equations:
- V_{IN} = 12V
- V_{OUT} = 38V
- I_{OUT} = 400 mA
- L = 15 μH 20% = 12 μH
- f = 1.25 MHz
- I_{SAT} = 1.6A

As a result the inductor should be selected according to the I_{SAT} . A more conservative and recommended approach is to choose an inductor that has a saturation current rating greater than the maximum current limit of 2.5A. A 15 μH inductor with a saturation current rating of 2.5A is recommended for most applications. The inductor's resistance should be less than 300 m Ω for good efficiency. For high efficiency choose an inductor with high frequency core material such as ferrite to reduce core losses. To minimize radiated noise, use shielded core inductor. Inductor should be placed as close to the SW

pin and the IC as possible. Special care should be used when designing the PCB layout to minimize radiated noise and to get good performance from the boost converter. For more information on the PCB layout recommendations, please refer to LP8552TL layout guide.

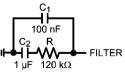
OUTPUT CAPACITOR

A ceramic capacitor with 50V voltage rating or higher is recommended for the output capacitor. The DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance value selection. For light loads a 4.7 μ F capacitor is sufficient. Effectively the capacitance should be 4 μ F for < 150 mA loads. For maximum output voltage/current 10 μ F capacitor (or two 4.7 μ F capacitors) is recommended to minimize the output ripple.

LDO CAPACITOR

A 1 μ F ceramic capacitor with 10V voltage rating is recommended for the LDO capacitor.

OUTPUT DIODE


A Schottky diode should be used for the output diode. Peak repetitive current should be greater than inductor peak current (2.5A) to ensure reliable operation. Average current rating should be greater than the maximum output current. Schottky diodes with a low forward drop and fast switching speeds are ideal for increasing efficiency in portable applications. Choose a reverse breakdown voltage of the Schottky diode significantly larger (~60V) than the output voltage. Do not use ordinary rectifier diodes, since slow switching speeds and long recovery times cause the efficiency and the load regulation to suffer.

RESISTORS FOR SETTING THE LED CURRENT AND PWM FREQUENCY

See EEPROM register description on how to select values for these resistors

FILTER COMPONENT VALUES

Optimal components for 60 Hz V_{SYNC} frequency and 4 Hz cutoff frequency of the low-pass filter are shown in the typical application diagrams and in the figure below. If 2 Hz cut-off frequency i.e., slower response time is desired, filter components are: C₁ = 1 μ F, C₂ = 10 μ F and R = 47 kΩ. If different V_{SYNC} frequency or response time is desired, please contact National Semiconductor representative for guidance.

30138181

ï	Register Map									
ADDR	REGISTER	D7	9Q	D5	D4	D3	D2	5	00	DEFAULT
HOO	Brightness Control				BR	BRT[7:0]				0000 0000
01H	Device Control						BRT_M	BRT_MODE[1:0]	BL_CTL	0000 0000
02H	Fault	OPEN	SHORT	2_CHANNELS	2_CHANNELS 1_CHANNEL	BL_FAULT	ОСР	TSD	ΠΛΓΟ	0000 0000
03H	Q	PANEL		MFG	MFG[3:0]			REV[2:0]		1111 1100
04H	Direct Control					OUT[6:1]	[6:1]			0000 0000
05H	Temp MSB				TEM	TEMP[10:3]				0000 0000
06H	Temp LSB		TEMP[2:0]							0000 0000
72H	EEPROM_control EE_READY	EE_READY					EE_INIT	EE_PROG	EE_READ	0000 0000

ADDR	REGISTER	D7	D6	D5	D4	D3	D2	D1	DO
HOH	eeprom addr 0				CURRE	CURRENT[7:0]		*	
A1H	eeprom addr 1	BOOST	BOOST_FREQ[1:0]	EN_PWM_&_I CTRL	TEMP_LIM[1:0]	-IM[1:0]		SLOPE[2:0]	
A2H	eeprom addr 2	ADAPTIVE	ADAPTIVE_SPEED[1:0]	ADV_SLOPE	ADV_SLOPE MODE_25/50% EN_ADAPT SEL	EN_ADAPT	EN_BOOST		I_SLOPE[1]
A3H	eeprom addr 3		-0[1:0]	EN_PSPWM			PWM_FREQ[4:0]		
A4H	eeprom addr 4	PWM_RES	PWM_RESOLUTION[1:0]	EN_I_RES	LED_FAULT_T I_SLOPE[0] HR	I_SLOPE[0]		DRV_HEADR[2:0]	
A5H	eeprom addr 5	EN_VSYNC	DITHER[1:0]	3[1:0]			VBOOST[4:0]		
A6H	eeprom addr 6				PLL[12:5]	12:5]			
A7H	eeprom addr 7			PLL[4:0]			EN_F_RES	HYSTERESIS[1:0]	SIS[1:0]

Register Bit Explanations

BRIGHTNESS CONTROL

Address 00h

Reset value 0000 0000b

Brightness Control register

Brightiness 60	ind of register						
7	6	5	4	3	2	1	0
			BRT[7	':0]			
Name	Bit	Access	Description				
BRT	7:0	R/W	Backlight PWM	1 8-bit linear co	ntrol.		

DEVICE CONTROL

Address 01h

Reset value 0000 0000b

Device Control register

7	6	5	4	3	2	1	0
					BRT_M	ODE[1:0]	BL_CTL
Name	Bit	Access	Description				
BRT_MODE	2:1	R/W	PWM source m	ode			
			00b = PWM inp	out pin duty cy	cle control (defau	ult)	
			01b = PWM inp	out pin duty cy	cle control		
			10b = Brightne	ss register			
			11b = Direct P	VM control fro	m PWM input pir	า	
BL_CTL	0	R/W	Enable backlig	nt			
			0 = Backlight d	sabled and ch	ip turned off if BF	RT_MODE[1:0]	= 10. In externa
			PWM pin contr	ol the state of	the chip is define	ed with the PWN	A pin and this b
			has no effect.				
			1 = Backlight e	nabled and ch	ip turned on if BF	RT_MODE[1:0]	= 10. In externa
			PWM pin contr	ol the state of	the chip is define	ed with the PWN	I pin and this b
			has no effect.				

FAULT

Address 02h

Reset value 0000 0000b

Fault register

i aant i ogiotoi										
7	6	5	4	3	2	1	0			
OPEN	SHORT	2_CHANNELS	1_CHANNEL	BL_FAULT	OCP	TSD	UVLO			
	-		-							
Name	Bit	Access	Description							
OPEN	7	R	LED open fault detection							
			0 = No fault							
			1 = LED open fault detected. Fault pin is pulled to GND. Fault is cleared by							
			reading the register	r 02h or setting EN	l pin low.					
SHORT	6	R	LED short fault dete	ection						
			0 = No fault 1 = LED short fault detected. Fault pin is pulled to GND. Fault is cleared by							
			reading the register	r 02h or setting EN	l pin low.					

Fault register			,
2_CHANNEL S	5	R	LED fault detection 0 = No fault 1 = 2 or more channels have generated either short or open fault. Fault pin is pulled to GND. Fault is cleared by reading the register 02h or setting EN pin low
1_CHANNEL	4	R	LED fault detection 0 = No fault 1 = 1 channel has generated either short or open fault. Fault pin is pulled to GNI Fault is cleared by reading the register 02h or setting EN pin low.
BL_FAULT	3	R	LED fault detection 0 = No fault 1 = LED fault detected. Generated with OR function of all LED faults. Fault pi is pulled to GND. Fault is cleared by reading the register 02h or setting EN pi low.
OCP	2	R	Over current protection 0 = No fault 1 = Over current detected in boost output. OCP detection block monitors the boost output and if the boost output has been too low for more than 50 ms it w generate OCP fault and disable the boost. Fault pin is pulled to GND. Fault is cleared by reading the register 02h or setting EN pin low. After clearing the fau boost will startup again.
TSD	1	R	Thermal shutdown 0 = No fault 1 = Thermal fault generated, 150°C reached. Boost converted and LED outpu will be disabled until the temperature has dropped down to 130°C. Fault pin is pulled to GND. Fault is cleared by reading the register 02h or setting EN pin low
UVLO	0	R	Under-voltage detection 0 = No fault 1 = Under-voltage detected in VIN pin. Boost converted and LED outputs will b disabled until VIN voltage is above the threshold voltage. Threshold voltage is set with EEPROM bits from 3V9V. Fault pin is pulled to GND. Fault is cleared by reading the register 02h or setting EN pin low.

IDENTIFICATION

Address 03h

Reset value 1111 1100b

Identification register

luentincation	register							
7	6	5	4 3 2 1 0					
PANEL MFG[3:0] REV[2:0]								
	-							
Name	Bit	Access	Description					
PANEL	7	R	Panel ID code					
MFG	6:3	R	Manufacturer ID code					
REV	2:0	R	Revision ID code	e				

٦

LP8552

29

DIRECT CONTROL

Address 04h

Reset value 0000 0000b

7	6	5	4	3	2	1	0		
			3	OUT	[6:1]				
Name	Bit	Access	Description						
OUT	5:0	R/W	Direct control of the LED outputs						
001			0 = Normal operation. LED output are controlled with PWM.						
001			0 = Normal oper	ation. LED outpu	t are controlled w	vith PWM.			

TEMP MSB

Address 05h

Reset value 0000 0000b

Temp MSB r	egister								
7	6	5	4	3	2	1	0		
	TEMP[10:3]								
Name	Bit	Access	Description						
TEMP	7:0	R		emperature sense ading of MSB rec	-		be read before		

TEMP LSB

Address 06h

Reset value 0000 0000b

Temp LSB r	egister								
7	6	5	4	3	2	1	0		
	TEMP[2:0]								
		_	•	•	•	•	•		
Name	Bit	Access	Description						
TEMP	7:5	R	Device internal temperature sensor reading last 3 LSB. MSB must be read before LSB, because reading of MSB register latches the data.						

EEPROM CONTROL

Address 72h

Reset value 0000 0000b

EEPROM Control	l register									
7	6	5	4	3	2	1	0			
EE_READY					EE_INIT	EE_PROG	EE_READ			
Name	Bit	Access	Description							
EE_READY	7	R	EEPROM ready							
			0 = EEPROM programming or read in progress							
			1 = EEPROM ready, not busy							
EE_INIT	2	R/W	EEPROM initialization bit. This bit must be written 1 before EEPROM read or							
			programmir	ng.						
EE_PROG	1	R/W	EEPROM p	orogramming.						
			0 = Normal	operation						
			1 = Start the	e EEPROM pro	gramming seque	nce. EE_INIT mu	st be written 1			
			before EEP	ROM programn	ning can be starte	ed. Programs data	a currently in the			
				0	,	(NVM). Programn	0 1			
				•	amming voltage	is generated insid	e the chip.			
EE_READ	0	R/W	EEPROM r							
			0 = Normal	•						
						OM registers. Car				
			restore defa	ault values if EE	PROM registers	are changed duri	ng testing.			

Programming sequence (program data permanently from registers to NVM):

- 1. Turn on the chip by writing BL_CTL bit to 1 and BRT_MODE[1:0] to 10b (05h to address 01h)
- 2. Write data to EEPROM registers (address A0h...A7h).
- 3. Write EE_INIT to 1 in address 72h. (04h to address 72h).
- 4. Write EE_PROG to 1 and EE_INIT to 0 in address 72h. (02h to address 72h).
- 5. Wait 200 ms.
- 6. Write EE_PROG to 0 in address 72h. (00h to address 72h).

Read sequence (load data from NVM to registers):

- 1. Turn on the chip by writing BL_CTL bit to 1 and BRT_MODE[1:0] to 10b (05h to address 01h).
- 2. Write EE_INIT to 1 in address 72h. (04h to address 72h).
- 3. Write EE_READ to 1 and EE_INIT to 0 in address 72h. (01h to address 72h).
- 4. Wait 200 ms.
- 5. Write EE_READ to 0 in address 72h. (00h to address 72h).

Note: Data written to EEPROM registers is effective immediately even if the EEPROM programming sequence has not been done. When power is turned off, the device will however lose the data if it is not programmed to the NVM. During startup device automatically loads the data from NVM to registers.

EEPROM Bit Explanations

EEPROM Default Values

ADDR	LP8552	LP8552-E00
A0h	0111 1111	0111 1111
A1h	1111 0101	1011 0101
A2h	1011 1111	1011 1111
A3h	0111 1011	0111 1011
A4h	0010 1000	0010 1000
A5h	1100 1111	1100 1111
A6h	0110 0100	0110 0100
A7h	0010 1101	0010 1101

EEPROM ADDRESS 0

Address A0h

EEPROM ADDRE	ESS 0 registe	r						
7	6	5	4	3	2	1	0	
			CUR	RENT[7:0]				
Name	Bit	Access			Description			
CURRENT	7:0	R/W	Backlight current adjustment. If EN_I_RES = 0 the maximum backlight current defined only with these bits as described below. If EN_I_RES = 1, then the external resistor connected to ISET pin also scales the LED current. With 16 k Ω resistor and CURRENT set to 7Fh the output current is then 23 mA.					
					EN_I_	RES = 1		
			0000	0000	0 mA	0	mA	
			0000	0001	0.12 mA	(1/255) x 600) x 1.23V/R _{ISET}	
			0000	0010	0.24 mA	(2/255) x 600	0 x 1.23V/R _{ISET}	
			0111 111	l (default)	15.00 mA	(127/255) x 60	00 x 1.23V/R _{ISET}	
			1111	1101	29.76 mA	(253/255) x 60	00 x 1.23V/R _{ISET}	
			1111	1110	29.88 mA	(254/255) x 60	00 x 1.23V/R _{ISET}	
			1111	1111	30.00 mA	(255/255) x 60	00 x 1.23V/R _{ISET}	

EEPROM ADDRESS 1

Address A1h

7	6	5	4 3 2 1 0					
BOOST_FREQ[1:0] EN_PWM_&_I_CT		EN_PWM_&_I_CTRL	TEMP_LIM[1:0] SLOPE[2:0]					
		<u>.</u>						
Name	Bit	Access	Description					
BOOST_FREQ	7:6	R/W	Boost Conve	rter Switch Fr	equency			
			00 = 156 kHz					
			01 = 312 kHz	2				
			10 = 625 kHz	2				
			11 = 1250 k⊦	łz				

EEPROM ADDRESS 1	regis	ter	
EN_PWM_&_I_CTRL	5	R/W	Enable PWM & current control
			0 = PWM control used with constant current
			1 = Automatic PWM & current control enabled
TEMP_LIM	4:3	R/W	Thermal deration function temperature threshold
			00 = thermal deration function disabled
			01 = 110°C
			10 = 120°C
			11 = 130°C
SLOPE	2:0	R/W	Slope time for brightness change
			000 = Slope function disabled, immediate brightness change
			001 = 50 ms
			010 = 75 ms
			011 = 100 ms
			100 = 150 ms
			101 = 200 ms
			110 = 300 ms
			111 = 500 ms

Address A2h

7	6	5	4	3	2	1	0		
ADAPTIVE_SPEE	ED[1:0]	ADV_SLOPE	MODE_25/50 _SEL	EN_ADAPT	EN_BOOST	BOOST_IMAX	I_SLOPE[1]		
		-	-	-					
Name	Bit	Access	Description						
ADAPTIVE SPEED	7	R/W	Boost converte	r adaptive cont	rol speed adjus	tment			
[1]			0 = Normal mod	de					
			1 = Adaptive m	ode optimized t	for light loads. /	Activating this help	s the voltage		
			droop with light	loads during b	oost / backlight	startup.			
ADAPTIVE SPEED	6	R/W	Boost converte	r adaptive cont	rol speed adjus	tment			
[0]			0 = Adjust boos	t once for each	n phase shift cy	cle or normal PWN	1 cycle		
			1 = Adjust boos	st every 16th ph	nase shift cycle	or normal PWM cy	/cle		
ADV_SLOPE	5	R/W	Advanced slope	Э					
			0 = Advanced s	lope is disable	d				
			1 = Use advanc	ed slope for br	ightness chang	e to make brightne	ess changes		
			smooth for eye						
MODE_25/50_SEL	4	R/W	25% or 50% m	ode selection fo	or PWM & curre	ent control			
			0 = 50% mode selected						
			1 = 25% mode	selected					
EN_ADAPT	3	R/W	Enable boost co	onverter adapti	ve mode				
			0 = adaptive mode disabled, boost converter output voltage is set with VBOOST						
			EEPROM regis	ter bits					
						startup voltage is se			
			-		•	ge is reached the l			
						Iriver output headro	oom is set with		
			DRV_HEADR E		ol bits.				
EN_BOOST	2	R/W	Enable boost co						
			0 = boost is dis						
			1 = boost is ena	abled and will to	urn on automat	ically when backlig	ht is enabled		

EEPROM ADDRESS 2 register					
BOOST_IMAX	1	R/W	Boost converter inductor maximum current 0 = 1.4A 1 = 2.5A (recommended)		
I_SLOPE[1]	0	R/W			

Address A3h

EEPROM ADDRESS	6 3 register			_		_		
7	6	5	4	3	2	1	0	
UVLO[1:0]		EN_PSPWM	PWM_FREQ[4:0]					
Name	Bit	Access	Description					
UVLO	7:6	R/W	00 = Disabled					
			01 = 2.7V					
			10 = 5.4V					
			11 = 8.1V					
EN_PSPWM	5	R/W	Enable phase	shift PWM sc	heme			
			0 = phase shif	t PWM disabl	ed, normal PW	M mode used		
			1 = phase shif	t PWM enable	ed			
PWM_FREQ	4:0	R/W	PWM output fr	equency setti	ng. See pg. 15	for full descrip	ption of	
			selectable PW	M frequencie	s.			

EEPROM ADDRESS 4

Address A4h

EEPROM ADDF	RESS 4 register	r				i	i
7	6	5	4	3	2	1	0
PWM_RESO	LUTION[1:0]	EN_I_RES	LED_FAULT_THR	I_SLOPE[0]		DRV_HEADR[2	2:0]
Name	Bit	Access	Description				
PWM	7:6	R/W	PWM output resoluti	on selection. Act	ual resolutior	n depends also	on the output
RESOLUTION			frequency. See table	e in <i>PWM FREQ</i>	JENCY SET	TING for full des	scription.
			00 = 810 bits (19.2	2 kHz4.8 kHz)			
			01 = 911 bits (19.2	2 kHz 4.8 kHz)			
			10 = 1012 bits (19.	.2 kHz4.8 kHz)			
			11 = 1113 bits (19	.2 kHz4.8 kHz)			
EN_I_RES	5	R/W	Enable LED current	set resistor			
			0 = Resistor is disabl	led and current is	set only with	CURRENT EE	PROM register
			bits				
			1 = Enable LED curr	ent set resistor.	LED current i	s defined by the	e R _{ISET} resistor
			and the CURRENT I	EEPROM registe	er bits.		
LED_FAULT_T	4	R/W	LED fault detector th	resholds. V _{SAT} is	the saturation	n voltage of the	driver, typically
HR			200 mV.				
			0 = 3.3V				
			1 = 5.3V				
I_SLOPE[0]	3	R/W					

EEPROM ADDRE	55 4 register	1	
DRV_HEADR	2:0	R/W	LED output driver headroom control. V _{SAT} is the saturation voltage of the driver
			typically 200 mV.
			000 = V _{SAT} + 125 mV
			$001 = V_{SAT} + 250 \text{ mV}$
			010 = V _{SAT} + 375 mV
			$011 = V_{SAT} + 500 \text{ mV}$
			$100 = V_{SAT} + 625 \text{ mV}$
			$101 = V_{SAT} + 750 \text{ mV}$
			110 = V _{SAT} + 875 mV
			111 = V _{SAT} + 1000 mV

Address A5h

EEPROM ADDRESS 5 register 6 5 4 3 2 1 0 7 DITHER[1:0] EN_VSYNC VBOOST[4:0] Name Bit Access Description EN_VSYNC 7 R/W Enable V_{SYNC} function 0 = V_{SYNC} input disabled $1 = V_{SYNC}$ input enabled. V_{SYNC} signal is used by the internal PLL to generate PWM output and boost frequency. DITHER R/W 6:5 Dither function controls 00 = Dither function disabled 01 = 1-bit dither used for output PWM transitions 10 = 2-bit dither used for output PWM transitions 11 = 3-bit dither used for output PWM transitions VBOOST 4:0 R/W Boost voltage control from 10V to 40V with 1V step. If adaptive boost control is enabled, this sets the initial start voltage for the boost converter. If adaptive mode is disabled, this will directly set the output voltage of the boost converter. 0 0000 = 10V 0.0001 = 11V0 0010 = 12V ... 1 1101 = 39V 1 1110 = 40V 1 1111 = 40V

Address A6h

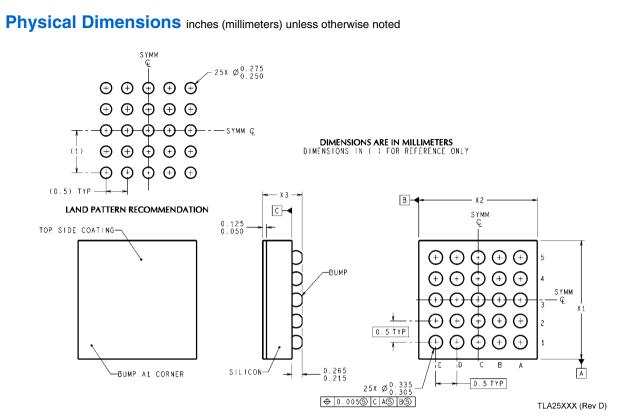
PROM ADDF	RESS 6 register						
7	6	5	4	3	2	1	0
PLL[12:5]							
		1	1				
Name	Bit	Access	Description				

EEPROM ADDRESS 7

Address A7h

7	6	5	4	3	2	1	0
		PLL[4:0]	•	•	EN_F_RES	HYSTER	RESIS[1:0]
Name	Bit	Access	Description				
PLL	7:3	R/W	 13-bit counter value for PLL, 5 LSB bits. PLL[12:0] bits are used when en_vsyr 1. See table below for PLL value calculation. Enable PWM output frequency set resistor 0 = Resistor is disabled and PWM output frequency is set with PWM_FREQ EEPROM register bits 1 = PWM frequency set resistor is enabled. R_{FSET} defines the output PWM frequence See table in <i>PWM FREQUENCY SETTING</i> for full description of the PWM frequencies. PWM input hysteresis function. Will define how small changes in the PWM input ignored to remove constant switching between two values. 00 = OFF 01 = 1-bit hysteresis with 11-bit resolution 10 = 1-bit hysteresis with 8-bit resolution 				
EN_F_RES	2	R/W					
HYSTERESIS	1:0	R/W					

PLL Value Calculation


en_vsync	PLL frequency [MHz]	PLL[12:0]
0	5, 10, 20, 40	not used
	5	5 MHz / (26 x f _{VSYNC})
	10	10 MHz / (50 x f _{VSYNC})
	20	20 MHz / (98 x f _{VSYNC})
	40	40 MHz / (196 x f _{VSYNC})

PLL frequency is set by PWM_RESOLUTION[1:0] bits.

For Example:

If $f_{PLL} = 5$ MHz and $f_{VSYNC} = 60$ Hz, then PLL[12:0] = 5000000 Hz / (26 * 60 Hz) = 3205d = C85h.

If $f_{PLL} = 10$ MHz and $f_{VSYNC} = 75$ Hz, then PLL[12:0] = 10000000 Hz / (50 * 75 Hz) = 2667d = A6Bh.

 $X1 = 2.466 \pm 0.030 \text{ mm}$

 $X2 = 2.466 \pm 0.030 \text{ mm}$

 $X3 = 0.600 \pm 0.075 \text{ mm}$

TLA2511A: Micro SMD-25 Package

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Desiç	yn Support
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	a O a Al a a m

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated